Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Xu, Y. M. et al. Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped Ba0.6K0.4Fe2As2 . Nat. Phys. 7, 198–202 (2011).
Mu, R. T. et al. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 51, 4856–4859 (2012).
Chung, I. et al. Flexible polar nanowires of Cs5BiP4Se12 from weak interactions between coordination complexes: strong nonlinear optical second harmonic generation. J. Am. Chem. Soc. 131, 2647–2656 (2009).
Wang, S. A. et al. Polarity and chirality in uranyl borates: insights into understanding the vitrification of nuclear waste and the development of nonlinear optical materials. Chem. Mater. 22, 2155–2163 (2010).
Nguyen, S. D., Yeon, J., Kim, S. H. & Halasyamani, P. S. BiO(IO3): a new polar iodate that exhibits an aurivillius-type (Bi2O2)2+ layer and a large SHG response. J. Am. Chem. Soc. 133, 12422–12425 (2011).
Zhang, G. et al. A new mixed halide, Cs2HgI2Cl2: molecular engineering for a new nonlinear optical material in the infrared region. J. Am. Chem. Soc. 134, 14818–14822 (2012).
Sykora, R. E., Ok, K. M., Halasyamani, P. S. & Albrecht-Schmitt, T. E. Structural modulation of molybdenyl iodate architectures by alkali metal cations in AMoO3(IO3) (A=K, Rb, Cs): a facile route to new polar materials with large SHG responses. J. Am. Chem. Soc. 124, 1951–1957 (2002).
Morris, C. D. et al. Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation. J. Am. Chem. Soc. 134, 20733–20744 (2012).
Wu, H. P. et al. Cs2B4SiO9: a deep-ultraviolet nonlinear optical crystal. Angew. Chem. Int. Ed. 52, 3406–3410 (2013).
Wu, H. P. et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 135, 4215–4218 (2013).
Chen, C. T., Wu, B. C., Jiang, A. D. & You, G. M. A new-type ultraviolet SHG crystal-Beta-BaB2O4 . Sci. Sin. B 28, 235–243 (1985).
Harasaki, A. & Kato, K. New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2 . Jpn J. Appl. Phys. 36, 700–703 (1997).
Boyd, G. D., Buehler, E. & Storz, F. G. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl. Phys. Lett. 18, 301–304 (1971).
Kang, L., Lin, Z. S., Qin, J. G. & Chen, C. T. Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2 . Sci. Rep. 3, 1366 (2013).
Xia, Y. N., Chen, C. T., Tang, D. Y. & Wu, B. C. New nonlinear-optical crystals for UV and VUV harmonic-generation. Adv. Mater. 7, 79–81 (1995).
Chen, C. T. et al. Design and synthesis of an ultraviolet-transparent nonlinear-optical crystal Sr2Be2B2O7 . Nature 373, 322–324 (1995).
Wang, S. C. & Ye, N. Na2CsBe6B5O15: an alkaline beryllium borate as a deep-UV nonlinear optical crystal. J. Am. Chem. Soc. 133, 11458–11461 (2011).
Huang, H. W. et al. Molecular engineering design to resolve the layering habit and polymorphism problems in deep UV NLO crystals: new structures in MM'Be2B2O6F (M=Na, M'=Ca; M=K, M'=Ca, Sr). Chem. Mater. 23, 5457–5463 (2011).
Huang, H. W. et al. NaSr3Be3B3O9F4: a promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F]10− anionic group. Angew. Chem. Int. Ed. 50, 9141–9144 (2011).
Wang, S. C., Ye, N., Li, W. & Zhao, D. Alkaline beryllium borate NaBeB3O6 and ABe2B3O7 (A=K, Rb) as UV nonlinear optical crystals. J. Am. Chem. Soc. 132, 8779–8786 (2010).
Kurtz, S. K. & Perry, T. T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968).
Eckardt, R. C., Masuda, H., Fan, Y. X. & Byer, R. L. Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbo3, and KTP measured by phase-matched second-harmonic generation. IEEE J. Quantum Elect. 26, 922–933 (1990).
Chen, C. T., Wang, G. L., Wang, X. Y. & Xu, Z. Y. Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl. Phys. B 97, 9–25 (2009).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).
Lin, J., Lee, M. H., Liu, Z. P., Chen, C. T. & Pickard, C. J. Mechanism for linear and nonlinear optical effects in Beta-BaB2O4 crystals. Phys. Rev. B 60, 13380–13389 (1999).
Lin, Z. S. et al. Theoretical calculations and predictions of the nonlinear optical coefficients of borate crystals. J. Phys. Condens. Mater. 13, R369–R384 (2001).
Chen, C. A localized quantal theoretical treatment, based on anionic coordination polyhedron model, for the EO and SHG effects in crystals of the mixed-oxide types. Sci. Sin. 22, 756–776 (1979).
Zumsteg, F. C., Bierlein, J. D. & Gier, T. E. KxRb1-xTiOPO4-new nonlinear optical material. J. Appl. Phys. 47, 4980–4985 (1976).
Jeggo, C. R. B. & Nonlinear, G. D. Optical polarizability of the niobium-oxygen bond. J. Appl. Phys. 41, 2741–2743 (1970).
Williams, E. R., Faller, J. E. & Hill, H. A. New experimental test of coulomb’s law: a laboratory upper limit on the photon rest mass. Phy. Rev. Lett. 26, 721–724 (1971).
CrystalClear V. 1.3.5 (Rigaku Corp: The Woodlands, TX, (1999).
Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).
Ingle, J. D. J. & Crouch, S. R. Spectrochemical Analysis Prentice Hall: New Jersey, (1988).
Chen, C., Lin, Z. & Wang, Z. The development of new borate-based UV nonlinear optical crystals. Appl. Phys. B 80, 1–25 (2005).
Lin, J. S., Qteish, A., Payne, M. C. & Heine, V. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 47, 4174–4180 (1993).
Monkhors, H. J. Pack & On, J. D. Special points for Brillouin zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Lee, M. H., Yang, C. H. & Jan, J. H. Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials. Phys. Rev. B 70, 235110 (2004).