Berries: Improving Human Health and Healthy Aging, and Promoting Quality Life—A Review

Plant Foods for Human Nutrition - Tập 65 Số 3 - Trang 299-308 - 2010
Octavio Paredes‐López1, Martha L. Cervantes-Ceja1,2, M. Vigna-Pérez3, Talía Hernández-Pérez1
1Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico
2PROPAC (Programa de Posgrado en Alimentos del Centro de la República), Universidad Autónoma de Querétaro, Querétaro, Mexico
3Laboratorio de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nöthlings U, Schulze M, Weikert C, Boeing H, van der Schouw YT, Bamia C, Benetou V, Lagiou P, Krogh V, Beulens JWJ, Peeters PHM, Halkjaer J, Tjonneland A, Tumino R, Panico S, Masala G, Clavel-Chapelon F, de Lauzon B, Boutron-Ruault M, Vercambre MN, Kaaks R, Linseisen J, Overvad K, Arriola L, Ardanaz E, Gonzales C, Tormo MJ, Bingham SA, Khaw KT, Key TJA, Vineis P, Riboli E, Ferrari P, Boffetta P, Bueno-de-Mesquita HB, Van der ADL, Berglund G, Wirfa¨lt E, Hallmans G, Johansson I, Lund E, Trichopoulo A (2008) Intake of vegetables, legumes, and fruit, and risk of all-cause, cardiovascular, and cancer mortality in a European diabetic population. J Nutr 138:775–781

Santos-Cervantes ME, Ibarra-Zazueta ME, Loarca-Piña G, Paredes-López O, Delgado-Vargas F (2007) Antioxidant and antimutagenic activities of Randia echinocarpa fruit. Plant Foods Hum Nutr 62:71–77

Timlin TM, Pereira AM (2007) Breakfast frequency and quality in the etiology of adult obesity and chronic diseases. Nutr Rev 65:268–281

Szajdek A, Borowska JE (2008) Bioactive compounds and health-promoting propierties of berry fruits: a review. Plant Foods Hum Nutr 63:147–156

Nurmi T, Mursu J, Heinonen M, Nurmi A, Hiltunen R, Voutilainen S (2009) Metabolism of berry anthocyanins to phenolic acids in humans. J Agric Food Chem 57:2274–2281

Alwerdt JL, Seigler DS, Gonzalez de Mejia E, Yousef GG, Lila MA (2008) Influence of alternative liquid chromatography techniques on the chemical complexity and bioactivity of isolated proanthocyanidin mixtures. J Agric Food Chem 56:1896–1906

Seeram PN, Adams SL, Zhao Y, Lee R, Sand D, Scheuller SH, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54:9329–9339

Seeram PN (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629

Kraft BTF, Dey M, Rogers RB, Ribnicky DM, Gipp DM, Cefalu WT, Raskin I, Lila MA (2008) Phytochemical composition and metabolic performance- enhancing activity of dietary berries traditionally used by native north Americans. J Agric Food Chem 56:654–660

Maiani G, Castón PMJ, Catasta G, Toti E, Cambrodón GI, Bysted A, Lorencio GF, Alonso OB, Knuthsen A, Valoti M, Bőhm V, Miebach ME, Bensnilian D, Schlemmer U (2009) Carotenoids: actual knowledge on food sources intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:1–25

Šavikin K, Zdunić G, Janković T, Tasić S, Menković N, Stević T, Dordević B (2009) Phenolic content and radical scavenging capacity of berries and related jams from certificated area in Serbia. Plant Foods Hum Nutr 64:212–217

Sellappan S, Akoh CC, Krewer G (2002) Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem 50:2432–2438

Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702

Lafay S, Gil-Izquierdo A (2008) Bioavailability of phenolic compounds. Phytochem Rev 7:301–311

The World Health Report (2002) Reducing risks and promoting healthy life. Geneva, World Health Organization, 2002

Stapleton AP, James EM, Goodwill GA, Frisbee JC (2008) Obesity and vascular dysfunction. Pathophysiology 15:79–89

Delgado-Vargas F, Jiménez-Aparicio A, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins and betalains—characteristics, biosynthesis, processing and stability. Crit Rev Food Sci Nutr 40:173–289

Benvenuti S, Pellati K, Melegari M, Bertell D (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Agric Food Chem 69:FCT164–FCT169

Häkkinen SH, Törrönrn AR (2000) Contents of flavonoids and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique. Food Res Int 33:517–524

Skupień K, Oszmiański J (2004) Comparison of six cultivars of strawberries (Fragaria x ananassa Duch) grown in northwest Poland. Eur Food Res Technol 219:66–70

Kellogg J, Wang J, Flint C, Ribnicky D, Kuhn P, de Mejia EG, Raskin I, Lila MA (2010) Alaskan wild berry resources and human health under the cloud of climate change. J Agric Food Chem 58:3884–3900

Dietrich H, Rechner A, Patz CD (2004) Bioactive compounds in fruits and juice. Fruit Process 1:50–55

Leiro J, Arraz JA, Parama A, Alvarez MF, Sanmartin ML (2004) In vitro effects of the polyphenols resveratrol, manginferin and (−) epigallocatechin-3-gallate on the scuticociliate fish pathogen. Dis Aquat Org 59:171–174

Lee SK, Zhang W, Sanderson JS (2008) Selective growth inhibition of human leukemia and human lymphoblastoid cells by resveratrol via cell a cycle arrest and apoptosis induction. J Agric Food Chem 56:7572–7577

Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

Trethewey RN (2004) Metabolic profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201

Beekwilder J, Hall RD, de Vos CH (2005) Identification and dietary relevance of antioxidants from raspberry. Biofactors 23:197–205

Rommel A, Wrolstad RE (1993) Ellagic acid content of red raspberry juice as influenced by cultivar, processing and environmental factors. J Agric Food Chem 41:1951–1960

Zheng W, Wang YS (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. J Agric Food Chem 51:502–509

Fernández Panchon MS, Villano D, Troncoso MA, García Parrilla CM (2008) Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Crit Rev Food Sci Nutr 48:649–671

Kähkonen PM, Hopia IA, Heinonen M (2001) Berry phenolics and their antioxidant capacity. J Agric Food Chem 49:4076–4082

Kevers C, Falkowski M, Tabart J, Defraigne JO, Dommes J, Pincemail J (2007) Evolution of antioxidant capacity during storage of selected fruits and vegetables. J Agric Food Chem 55:8596–8603

Matta-Riihinen KK, Kamal EA, Torronen AR (2004) Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family rosaceae). J Agric Food Chem 52:6178–6187

Mattila P, Astola J, Kumpulainen J (2000) Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem 48:5834–5841

Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Tőrrőnen AR (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353

Wang S, Lin HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varieties with cultivar and developmental stage. J Agric Food Chem 18:140–146

Wu XL, Beecher GR, Holden JM, Haytowitz BD, Gebhardt ES, Prior LR (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

Koponen JM, Happonen AM, Mattila PH, Törrönen R (2007) Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem 55:1612–1619

Pascual TS, Sanchez BMT (2008) Anthocyanins: from plant to health. Phytochem Rev 7:281–299

Pawlowska AM, Olesker W, Braca A (2008) Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J Agric Food Chem 56:3377–3380

Lyons M, Yu Ch, Tomas RB, Cho SY, Reiboldt W, Lee J, van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 57:5867–5870

Rimando MA, Kalt W, Magee BJ, Dewey J, Ballington RJ (2004) Resveratrol, pterostilbene and piceatannol in Vaccinium berries. J Agric Food Chem 52:4713–4719

Wang Y, Catana F, Yang Y, Roderick R, Van Breemen RB (2002) An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice and wine. J Agric Food Chem 50:431–435

Matsuda H, Kageura T, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2000) Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorg Med Chem Lett 10:323–327

Park EK, Choo MK, Yoon HK, Kim DH (2002) Anti-thrombotic and antiallergic activities of rhaponticin from Rhei Rhizoma are activated by human intestinal bacteria. Arch Pharm Res 25:528–533

Mizuno CS, Schrader KK, Rimando AM (2008) Alguicidal activity of stilbene analogues. J Agric Food Chem 56:9140–9145

Joseph JA, Fisher DR, Cheng V, Rimando AM, Hale SB (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551

Shakibaei M, Harikumar BK, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128

Ehala S, Vaher M, Kaljurand M (2005) Characterization of phenolic profiles of northern European berries by capillary electrophoresis and determination of their antioxidant capacity. J Agric Food Chem 53:6484–6490

United States Department of Agriculture. Agricultural Research Service. USDA database for the flavonoid content of selected foods. Washington, DC, 2003

Clifford MN (2000) Review. Anthocyanins- nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072

Kong JJ, Chia LS, Goh NK (2003) Analysis and biological activities of anthocyanins. Phytochem 64:923–933

Shahidi F, Naczk M (1995) Food phenolics: sources, chemistry, effects and applications. CRC, Boca Raton, FL

Pappas E, Schaich M (2009) Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability. Crit Rev Food Sci Nutr 49:741–781

Bodet C, Grenire D, Chandad F, Ofek I, Steinberg D, Weiss E (2008) Potential oral health benefits of cranberry. Crit Rev Food Sci Nutr 48:672–680

Howell AB (2002) Cranberry proanthocyanidins and the maintenance of urinary tract health. Crit Rev Food Sci Nutr 42:273–278

Burger O, Weiss E, Sharon N, Tabak M, Neeman I, Ofek I (2002) Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular weight constituent of cranberry juice. Crit Rev Food Sci Nutr 42:279–284

Shmuely H, Burger O, Neeman I, Yahav J, Samra Z, Niv Y, Sharon N, Weiss E, Athamna A, Tabak M, Ofek I (2004) Susceptibility of Helicobacter pylori isolates to the antiadhesion activity of a high-molecular weight constituent of cranberry. Diagn Microbiol Infect Dis 50:231–235

Weiss EI, Houri-Haddad Y, Greenbaum E, Hochman N, Ofek I, Zakay-Rones Z (2005) Cranberry juice constituents affect influenza virus adhesion and infectivity. Antiviral Res 66:9–12

Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

Ames BN, Gold LS (1991) Endogenous mutagens and the causes of aging and cancer. Mutat Res 250:3–16

Liu RH, Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339:73–89

Seeram PN (2008) Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem 56:630–635

Chu YF, Sun J, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common vegetables. J Agric Food Chem 50:7449–7454

Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988

Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S

Moyer AR, Hummer EK, Finn EC, Frei B, Wrolstad ER (2002) Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J Agric Food Chem 50:519–525

Ogawa K, Sakakibara H, Iwata R, Ishii T, Sato T, Goda T, Shimoi K, Kumazawa S (2008) Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J Agric Food Chem 56:4457–4462

Wada L, Ou B (2002) Antioxidant activity and phenolic content of Oregon cranberries. J Agric Food Chem 50:3495–3500

Kay CD, Holub BJ (2002) The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. Br J Nutr 88:389–397

Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22:749–760

Ko SH, Choi SW, Ye SK, Cho BL, Kim HS, Chung MH (2005) Comparison of the antioxidant activities of 9 different fruits in human plasma. J Med Food 8:41–46

Netzel M, Strass G, Kaul C, Bitsch I, Dietrich H, Bitsch R (2002) In vivo antioxidative capacity of a composite berry juice. Food Res Int 35:213–216

Netzel M, Strass G, Herbst M, Dietrich H, Bitsch R, Bitsch I, Frank T (2005) The excretion and biological antioxidant activity of elderberry antioxidants in healthy humans. Food Res Int 38:905–910

Vinson JA, Proch J, Bose P (2001) Meganatural gold grapeseed extract: in vitro antioxidant and in vivo human supplementation studies. J Med Food 4:17–26

Vinson JA, Su X, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315–5321

Day AP, Kemp HJ, Bolton C, Hartog M, Stansbie D (1997) Effect of concentrated red grape juice consumption on serum antioxidant capacity and low-density lipoprotein oxidation. Ann Nutr Metab 41:353–357

Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker JD, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3:e2264

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhan LL, Xcherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839–4854

Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

Tucker G, Robards K (2008) Bioactivity and structure of biophenols as mediators of chronic diseases. Crit Rev Food Sci Nutr 48:929–966

Konishi Y, Hitomi Y, Yoshioka E (2004) Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J Agric Food Chem 52:2527–2532

Lei F, Xing DM, Zhao YN, Zhang LJ, Du LJ (2003) Pharmacokinetic study of ellagic acid after oral administration of pomegranate leaf extract. J Chromatogr B Analyt Technol Biomed Life Sci 796:189–194

Rondini L, Peyrat-Maillard MN, Marsset-Baglieri A, Berset C (2002) Sulfated ferulic acid is the main in vivo metabolite found after short-term ingestion of free ferulic acid in rats. J Agric Food Chem 50:3037–3041

Nielsen ILF, Dragsted LO, Ravin-Haren G, Freese R, Rasmussen SE (2003) Absorption and excretion of black currant anthocyanins in humans and Watanabe heritable hyperlipidemic rabbits. J Agric Food Chem 51:2813–2820

McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713

Walton MC, Hendriks WH, Reynolds GW, Kruger MC, McGhie TK (2006) Anthocyanin absorption and plasma antioxidant status in pigs. J Agric Food Chem 54:7940–7946

Cartron E, Fouret G, Carbonneau MA, Lauret C, Michel F, Monnier L, Descomps B, Leger CL (2003) Red-wine beneficial long-term effect on lipids but not on antioxidant characteristics in plasma in a study comparing three types of wine-description of two O-methylated derivatives for gallic acid in humans. Free Radic Res 37:1021–1035

Bub A, Watzl B, Heeb D, Rechkemmer G, Briviba K (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, de-alcoholized red wine and red grape juice. Eur J Nutr 40:113–120

Milbury PE, Cao G, Prior RL, Blumberg JB (2002) Bioavailability of elderberry anthocyanins. Mech Ageing Dev 123:997–1006

Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14:806–814

Knekt P, Jarvinen R, Seppanen R, Heliovaara M, Teppo L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146:223–230

Juan ME, Vinardell MP, Planas JM (2002) The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. J Nutr 132:257–260

Elbling L, Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M (2005) Green tea extract and (−)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 19:807–809

Kroon P, Williamson G (2005) Polyphenols: dietary components with established benefits to health? J Sci Food Agric 85:1239–1240

Cuevas-Rodríguez EO, Yousef GG, García-Saucedo PA, López-Medina J, Paredes-López O, Lila MA (2010) Characterization of anthocyanins and proanthocyanidins in wild and domesticated mexican blackberries (Rubus spp.). J Agric Food Chem. doi: 10.1021/jf101485r