So sánh sự tự lắp ráp của biosurfactant surfactin ở giao diện lỏng-khí với các chất hoạt động bề mặt tổng hợp

Journal of Surfactants and Detergents - Tập 19 - Trang 645-652 - 2016
Sagheer A. Onaizi1,2, M. S. Nasser3, Nasir M. A. Al-Lagtah1,2
1School of Chemical Engineering and Advanced Materials, Newcastle University, Singapore, Singapore
2School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
3Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar

Tóm tắt

Nghiên cứu này đã điều tra sự hấp phụ của surfactin, một biosurfactant lipopeptide, tại giao diện lỏng-khí. Mật độ hấp phụ tối đa và bản chất cũng như mức độ tương tác ngang giữa các phân tử surfactin đã được hấp phụ tại giao diện được ước tính từ dữ liệu căng bề mặt bằng cách sử dụng mô hình Frumkin. Thông tin định lượng thu được từ mô hình Frumkin cũng được so sánh với những thông tin thu được từ phương trình Gibbs và mô hình Langmuir–Szyszkowski. Phân tích sai số cho thấy sự phù hợp tốt hơn giữa các giá trị thực nghiệm và giá trị tính toán dựa trên mô hình Frumkin so với hai mô hình kia. Sự hấp phụ của surfactin tại giao diện lỏng-khí cũng được so sánh với sự hấp phụ của các chất hoạt động bề mặt tổng hợp anion như natri dodecylbenzenesulfonate (SDBS) và phi ion như ether monotetradecyl octaethylene glycol (C14E8). Đã ước tính rằng diện tích mà một phân tử surfactin chiếm tại giao diện lớn hơn khoảng 3 lần và 2.5 lần so với diện tích mà các phân tử SDBS và C14E8 lần lượt chiếm. Tương tác giữa các phân tử biosurfactant anion (surfactin) đã được ước tính là hấp dẫn, trái ngược với tương tác đẩy nhẹ giữa các phân tử SDBS đã được hấp phụ.

Từ khóa

#Surfactin #biosurfactant #giao diện lỏng-khí #mô hình Frumkin #SDBS #C14E8 #hấp phụ

Tài liệu tham khảo

Dexter AF, Middelberg APJ (2008) Peptides as functional surfactants. Ind Eng Chem Res 47:6391–6398 Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494 Cooper DG, Macdonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412 Onaizi SA, He L, Middelberg APJ (2009) Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloids Surf B 72:68–74 Onaizi SA, Nasser MS, Twaiq FA (2012) Micellization and interfacial behavior of a synthetic surfactant–biosurfactant mixture. Colloids Surf A 415:388–393 Gurkov TD, Dimitrova DT, Marinova KG, Bilke-Crause C, Gerber C, Ivanov IB (2005) Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase. Colloids Surf A 261:29–38 Fainerman VB, Lucassen-Reynders EH, Miller R (1998) Adsorption of surfactants and proteins at fluid interfaces. Colloids Surf A 143:141–165 Giribabu K, Ghosh P (2007) Adsorption of nonionic surfactants at fluid–fluid interfaces: importance in the coalescence of bubbles and drops. Chem Eng Sci 62:3057–3067 Ma J-G, Boyd BJ, Drummond CJ (2006) Positional isomers of linear sodium dodecyl benzene sulfonate: solubility, self-assembly, and air/water interfacial activity. Langmuir 22:8646–8654 Onaizi SA, Nasser MS, Al-Lagtah NMA (2015) Adsorption of an anionic surfactant at air–liquid and different solid–liquid interfaces from solutions containing high counter-ion concentration. Colloid Polym Sci 293:2891–2899 Phan CM, Nguyen AV, Evans GM (2005) Dynamic adsorption of sodium dodecylbenzene sulphonate and Dowfroth 250 onto the air–water interface. Miner Eng 18:599–603 Prosser AJ, Franses EI (2001) Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models. Colloids Surf A 178:1–40 Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123–126:213–229 Fainerman VB, Aksenenko EV, Mys AV, Petkov JT, Yorke J, Miller R (2010) Adsorption layer characteristics of mixed SDS/CnEOm solutions. 3. Dynamics of adsorption and surface dilational rheology of micellar solutions. Langmuir 26:2424–2429 He L, Onaizi SA, Dimitrijev-Dwyer M, Malcolm AS, Shen H-H, Dong C et al (2011) Comparison of positional surfactant isomers for displacement of RuBisCO protein from the air–water interface. J Colloid Interface Sci 360:617–622 Dan A, Gochev G, Kragel J, Aksenenko EV, Fainerman VB, Miller R (2013) Interfacial rheology of mixed layers of food proteins and surfactants. Curr Opin Colloid Interface Sci 18:302–310 He L, Malcolm AS, Dimitrijev M, Onaizi SA, Shen H-H, Holt SA et al (2009) Cooperative tuneable interactions between a designed peptide biosurfactant and positional isomers of SDOBS at the air–water interface. Langmuir 25:4021–4026 Jian H-L, Liao X-X, Zhu L-W, Zhang W-M, Jiang J-X (2011) Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants. J Colloid Interface Sci 359:487–492 Onaizi SA, Nasser MS, Twaiq FA (2014) Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid Polym Sci 292:1649–1656 Ueno M, Takasawa Y, Miyashige H, Tabata Y, Meguro K (1981) Effects of alkyl chain length on surface and micellar properties of octaethylene glycol-n alkyl ethers. Colloid Polym Sci 259:761–766 Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep Prog Chem Sect C 99:3–48 Li PX, Dong CC, Thomas RK, Penfold J, Wang Y (2011) Neutron reflectometry of quaternary gemini surfactants as a function of alkyl chain length: anomalies arising from ion association and premicellar aggregation. Langmuir 27:2575–2586 An SW, Lu JR, Thomas RK, Penfold J (1996) Apparent anomalies in surface excesses determined from neutron reflection and the Gibbs equation in anionic surfactants with particular reference to perfluorooctanoates at the air/water interface. Langmuir 12:2446–2453 Eastoe J, Nave S, Downer A, Paul A, Rankin A, Tribe K et al (2000) Adsorption of ionic surfactants at the air–solution interface. Langmuir 16:4511–4518 Onaizi SA, Nasser MS, Al-Lagtah NMA (2015) Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces. Eur Biophys J. doi:10.1007/s00249-015-1099-5 Adamson AW (1991) Physical chemistry of surfaces, 5th edn. Wiley, New York Lavi P, Marmur PA (2000) Adsorption isotherms for concentrated aqueous-organic solutions (CAOS). J Colloid Interface Sci 230:107–113 Rosen JM (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York Onaizi SA, He L, Middelberg APJ (2009) Proteolytic cleaning of a surface-bound rubisco protein stain. Chem Eng Sci 64:3868–3878 Onaizi SA, He L, Middelberg APJ (2010) The construction, fouling and enzymatic cleaning of a textile dye surface. J Colloid Interface Sci 351:203–209 Onaizi SA, Nasser MS, Twaiq FA (2014) Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods. Eur Biophys J 43:191–198 Eastoe J, Dalton JS (2000) Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Adv Colloid Interface Sci 85:103–144 Lin S-Y, Lee Y-C, Shao M-J, Hsu C-T (2001) A study on surfactant adsorption kinetics: the role of the data of equation of state g(G) for C14E8. J Colloid Interface Sci 244:372–376 Li PX, Li ZX, Shen H-H, Thomas RK, Penfold J, Lu JR (2013) Application of the Gibbs equation to the adsorption of nonionic surfactants and polymers at the air–water interface: comparison with surface excesses determined directly using neutron reflectivity. Langmuir 29:9324–9334 Shen H-H, Lin T-W, Thomas RT, Taylor DJF, Penfold J (2011) Surfactin structures at interfaces and in solution: the effect of pH and cations. J Phys Chem B 115:4427–4435 Gallet X, Deleu M, Razafindralambo H, Jacques P, Thonart P, Paquot M et al (1999) Computer simulation of surfactin conformation at a hydrophobic/hydrophilic interface. Langmuir 15:2409–2413 Jang SS, Goddard WA III (2006) Structures and properties of newton black films characterized using molecular dynamics simulations. J Phys Chem B 110:7992–8001 Gang H-Z, Liu J-F, Mu B-Z (2011) Molecular dynamics study of surfactin monolayer at the air/water interface. J Phys Chem B 115:12770–12777 Onaizi SA, Malcolm AS, He L, Middelberg APJ (2007) Directed disassembly of an interfacial rubisco protein network. Langmuir 23:6336–6341 He L, Onaizi SA, Dimitrijev-Dwyer M, Malcolm AS, Shen H-H, Dong C et al (2011) Comparison of positional surfactant isomers for displacement of rubisco protein from the air–water interface. J Colloid Interface Sci 360:617–622 Zhang XL, Taylor DJF, Thomas RK, Penfold J (2011) The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air–water interface. J Colloid Interface Sci 356:656–664 Ghosh P (2009) Colloid and interface science. PHI Learning Private Pvt Ltd., New Delhi Lu JR, Thomas RK, Penfold J (2000) Surfactant layers at the air/water interface: structure and composition. Adv Colloid Interface Sci 84:143–304 Karakashev S, Manev E, Nguyen A (2004) Interpretation of negative values of the interaction parameter in the adsorption equation through the effects of surface layer heterogeneity. Adv Colloid Interface Sci 112:31–36 Karakashev SI, Manev ED (2002) Effect of interactions between the adsorbed species on the properties of single and mixed-surfactant monolayers at the air/water interface. J Colloid Interface Sci 248:477–486 Karakashev SI, Manev ED (2003) Correlation in the properties of aqueous single films and foam containing a nonionic surfactant and organic/inorganic electrolytes. J Colloid Interface Sci 259:171–179 Hadi M, Samarghandi MR, MacKay G (2010) Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: study of residual errors. Chem Eng J 160:408–416