Benchmark numerical solutions for two-dimensional fluid–structure interaction involving large displacements with the deforming-spatial-domain/stabilized space–time and immersed boundary–lattice Boltzmann methods

Yuanqing Xu1, Yanqun Jiang2, Jie Wu3, Yi Sui4,5, Fang-Bao Tian4
1School of Life Science, Beijing Institute of Technology, Beijing, China
2Department of Mathematics, Southwest University of Science and Technology, Mianyang, Sichuan, China
3Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
4School of Engineering and Information Technology, University of New South Wales, Canberra, Australia
5School of Engineering and Materials Science, Queen Mary University of London, London, UK

Tóm tắt

Body-fitted and Cartesian grid methods are two typical types of numerical approaches used for modelling fluid–structure interaction problems. Despite their extensive applications, there is a lack of comparing the performance of these two types of approaches. In order to do this, the present paper presents benchmark numerical solutions for two two-dimensional fluid–structure interaction problems: flow-induced vibration of a highly flexible plate in an axial flow and a pitching flexible plate. The solutions are obtained by using two partitioned fluid–structure interaction methods including the deforming-spatial-domain/stabilized space–time fluid–structure interaction solver and the immersed boundary–lattice Boltzmann method. The deforming-spatial-domain/stabilized space–time fluid–structure interaction solver employs the body-fitted-grid deforming-spatial-domain/stabilized space–time method for the fluid motions and the finite-difference method for the structure vibrations. A new mesh update strategy is developed to prevent severe mesh distortion in cases where the boundary does not oscillate periodically or needs a long time to establish a periodic motion. The immersed boundary–lattice Boltzmann method uses lattice Boltzmann method as fluid solver and the same finite-difference method as structure solver. In addition, immersed boundary method is used in the immersed boundary–lattice Boltzmann solver to handle the fluid–structure interaction coupling. Results for the characteristic force coefficients, tail position, plate deformation pattern and the vorticity fields are presented and discussed. The present results will be useful for evaluating the performance and accuracy of existing and new numerical methodologies for fluid–structure interaction.

Từ khóa


Tài liệu tham khảo

10.1006/jcph.2002.7066

10.1016/j.cma.2004.09.014

10.1016/j.cma.2005.08.023

10.1016/j.jcp.2011.05.028

10.1063/1.3659892

10.1063/2.1202205

10.1063/1.4813006

10.1016/j.jfluidstructs.2012.07.006

10.1063/1.4905537

10.1016/j.jfluidstructs.2015.02.006

Tian FB, Chang S, Luo H, et al. Computational modeling of flow-induced vocal fold vibration. In: Annual ORNL biomedical science and engineering conference (BSEC 2013), Oak Ridge, TN, 21–23 May 2013.

Tian FB, Chang S, Luo H, et al. A 3D numerical simulation of wave propagation on the vocal fold surface. In: Proceedings of the 10th international conference on advances in quantitative laryngology, voice and speech research. Cincinnati, OH, 3–4 June 2013, pp.94921483.

10.1016/j.jcp.2013.10.047

10.1007/s00466-013-0875-2

10.1142/S0218202514500250

10.1007/s11831-014-9113-0

Tezduyar TE, 1992, Adv Appl Mech, 28, 1

10.1016/0045-7825(92)90060-W

10.1016/0045-7825(92)90059-S

10.1002/fld.505

10.1002/fld.1430

10.1007/s00466-011-0571-z

10.1142/S0218202512300013

10.1002/fld.1650150911

10.1016/j.cma.2004.09.018

10.1016/j.compfluid.2005.02.011

10.1142/S0218202513400010

10.1007/s00466-013-0905-0

10.1007/s00466-014-1007-3

10.1142/S0218202515400084

10.1016/0045-7825(82)90071-8

10.1016/0045-7825(84)90157-9

10.1016/0045-7825(92)90141-6

10.1002/fld.1650211011

10.1007/s004660050393

10.1103/PhysRevE.86.016304

10.1007/s00466-012-0759-x

10.1007/s00466-012-0758-y

10.1016/j.compfluid.2012.11.008

10.1115/1.4005073

10.1142/S0219519413400125

10.1007/s00466-014-0980-x

10.1007/s00466-014-1095-0

10.1007/s00466-014-1116-z

10.1242/jeb.140475

Tian FB, Young J and Lai JCS. A fem method for non-newtonian flow with moving boundaries and its application in fish swimming. In: The 8th international conference on computational fluid dynamics, Chengdu, China, 14–18 July 2014.

10.1016/0021-9991(72)90065-4

10.1016/0021-9991(77)90100-0

10.1146/annurev.fluid.37.061903.175743

10.1016/j.jcp.2006.08.019

10.1016/j.jcp.2006.12.007

10.1155/2014/489683

10.1016/j.jcp.2003.10.013

10.1002/fld.1381

10.1016/j.jcp.2008.03.017

10.1142/S1793524512500611

10.1016/j.resp.2013.12.009

10.1063/1.2734674

10.1103/PhysRevE.82.026301

Tian FB, Dai H, Luo H, et al. Computational fluid–structure interaction for biological and biomedical flows. In: Proceedings of the ASME 2013 fluids engineering division summer meeting, Incline Village, NV, 7–11 July 2013, pp.16408.

10.1016/j.jfluidstructs.2014.07.013

Landau LD, 1986, Theory of elasticity

10.1006/jfls.2000.0376

Bellman R, 1965, Oquisilinearization and nonlinear boundary-value problems

10.1016/0022-247X(66)90115-6

10.1137/0907058

10.1137/1.9780898718003

10.1017/S0022112007005307

10.1063/1.2055528

10.1016/j.compbiomed.2013.05.023

10.1109/2.237441

10.1016/0045-7825(94)00077-8

10.1103/PhysRevE.81.036305

10.1146/annurev.fluid.30.1.329

10.1103/PhysRevE.65.046308

10.1146/annurev-fluid-121108-145519

10.1209/0295-5075/17/6/001

10.1016/j.ijheatmasstransfer.2016.03.065

10.1063/2.1202401

10.1080/10255842.2012.729581

Tian FB, 2016, Computat Math Meth Med, 2016, 7981386

10.1016/j.cma.2009.03.008

10.1017/S0022112010002387

10.1016/j.camwa.2009.06.055

10.1016/j.camwa.2010.03.022

10.1017/S0022112094001771

10.1016/j.jcp.2008.01.028

10.1103/PhysRevLett.101.194502