Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment

Springer Science and Business Media LLC - Tập 14 - Trang 1-13 - 2013
Ryan Y Wong1, Sarah E Oxendine1, John Godwin1,2
1Department of Biology, North Carolina State University, Raleigh, USA
2WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, USA

Tóm tắt

Stress and anxiety-related behaviors are seen in many organisms. Studies have shown that in humans and other animals, treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) can reduce anxiety and anxiety-related behaviors. The efficacies and side effects, however, can vary between individuals. Fluoxetine can modulate anxiety in a stereospecific manner or with equal efficacy regardless of stereoisomer depending on the mechanism of action (e.g. serotonergic or GABAergic effects). Zebrafish are an emerging and valuable translational model for understanding human health related issues such as anxiety. In this study we present data showing the behavioral and whole brain transcriptome changes with fluoxetine treatment in wild-derived zebrafish and suggest additional molecular mechanisms of this widely-prescribed drug. We used automated behavioral analyses to assess the effects of racemic and stereoisomeric fluoxetine on male wild-derived zebrafish. Both racemic and the individual isomers of fluoxetine reduced anxiety-related behaviors relative to controls and we did not observe stereospecific fluoxetine effects. Using RNA-sequencing of the whole brain, we identified 411 genes showing differential expression with racemic fluoxetine treatment. Several neuropeptides (neuropeptide Y, isotocin, urocortin 3, prolactin) showed consistent expression patterns with the alleviation of stress and anxiety when anxiety-related behavior was reduced with fluoxetine treatment. With gene ontology and KEGG pathway analyses, we identified lipid and amino acid metabolic processes, and steroid biosynthesis among other terms to be over-enriched. Our results demonstrate that fluoxetine reduces anxiety-related behaviors in wild-derived zebrafish and alters their neurogenomic state. We identify two biological processes, lipid and amino acid metabolic synthesis that characterize differences in the fluoxetine treated fish. Fluoxetine may be acting on several different molecular pathways to reduce anxiety-related behaviors in wild-derived zebrafish. This study provides data that could help identify common molecular mechanisms of fluoxetine action across animal taxa.

Tài liệu tham khảo

American Psychiatric Association: Diagnostic criteria from DSM-IV-TR. 2000, Washington, D.C: American Psychiatric Association Cryan JF, Sweeney FF: The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol. 2011, 164: 1129-1161. 10.1111/j.1476-5381.2011.01362.x. Durant C, Christmas D, Nutt D: The pharmacology of anxiety. Curr Top Behav Neurosci. 2010, 2: 303-330. Jacobson LH, Cryan JF: Genetic approaches to modeling anxiety in animals. Curr Top Behav Neurosci. 2010, 2: 161-201. Westenberg HG: Recent advances in understanding and treating social anxiety disorder. CNS Spectr. 2009, 14: 24-33. Pinna G, Costa E, Guidotti A: Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci USA. 2004, 101: 6222-6225. 10.1073/pnas.0401479101. Wong DT, Bymaster FP, Engleman EA: Prozac (fluoxetine, lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: Twenty years since its first publication. Life Sci. 1995, 57: 411-441. 10.1016/0024-3205(95)00209-O. Wong DT, Bymaster FP, Reid LR, Fuller RW, Perry KW: Inhibition of serotonin uptake by optical isomers of fluoxetine. Drug Dev Res. 1985, 6: 397-403. 10.1002/ddr.430060412. Koch S, Perry KW, Nelson DL, Conway RG, Threlkeld PG, Bymaster FP: R-fluoxetine increases extracellular DA, NE, as well as 5-HT in rat prefrontal cortex and hypothalamus: an in vivo microdialysis and receptor binding study. Neuropsychopharmacology. 2002, 27: 949-959. 10.1016/S0893-133X(02)00377-9. Robertson DW, Krushinski JH, Fuller RW, Leander JD: Absolute configurations and pharmacological activities of the optical isomers of fluoxetine, a selective serotonin-uptake inhibitor. J Med Chem. 1988, 31: 1412-1417. 10.1021/jm00402a027. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH: Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009, 205: 38-44. 10.1016/j.bbr.2009.06.022. Dulawa SC, Holick KA, Gundersen B, Hen R: Effects of Chronic Fluoxetine in Animal Models of Anxiety and Depression. Neuropsychopharmacology. 2004, 29: 1321-1330. 10.1038/sj.npp.1300433. Pinna G, Costa E, Guidotti A: SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol. 2009, 9: 24-30. 10.1016/j.coph.2008.12.006. Pinna G, Costa E, Guidotti A: Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl). 2006, 186: 362-372. 10.1007/s00213-005-0213-2. Longone P, Di Michele F, D'Agati E, Romeo E, Pasini A, Rupprecht R: Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne). 2011, 2: 55- Barbaccia ML: Neurosteroidogenesis: relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Crit Rev Neurobiol. 2004, 16: 67-74. 10.1615/CritRevNeurobiol.v16.i12.70. Reddy DS, O'Malley BW, Rogawski MA: Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology. 2005, 48: 14-24. 10.1016/j.neuropharm.2004.09.002. Pinna G, Rasmusson AM: Up-regulation of neurosteroid biosynthesis as a pharmacological strategy to improve behavioural deficits in a putative mouse model of post-traumatic stress disorder. J Neuroendocrinol. 2012, 24: 102-116. 10.1111/j.1365-2826.2011.02234.x. Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R: Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs?. Neuroscience. 2011, 191: 55-77. Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E: The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5α-dihydroprogesterone in psychiatric disorders. Brain Res Rev. 2001, 37: 110-115. 10.1016/S0165-0173(01)00129-1. Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A: In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci USA. 2003, 100: 2035-2040. 10.1073/pnas.0337642100. Jain NS, Hirani K, Chopde CT: Reversal of caffeine-induced anxiety by neurosteroid 3-alpha-hydroxy-5-alpha-pregnane-20-one in rats. Neuropharmacology. 2005, 48: 627-638. 10.1016/j.neuropharm.2004.11.016. Bitran D, Foley M, Audette D, Leslie N, Frye CA: Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat. Psychopharmacology (Berl). 2000, 151: 64-71. 10.1007/s002130000471. Landgraf R: Neuropeptides in anxiety modulation. Handb Exp Pharmacol. 2005, 169: 335-369. 10.1007/3-540-28082-0_12. Semsar K, Perreault HA, Godwin J: Fluoxetine-treated male wrasses exhibit low AVT expression. Brain Res. 2004, 1029: 141-147. 10.1016/j.brainres.2004.09.030. Cryan JF, Holmes A: The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov. 2005, 4: 775-790. 10.1038/nrd1825. Overli O, Pottinger TG, Carrick TR, Overli E, Winberg S: Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J Exp Biol. 2002, 205: 391-395. Landgraf R, Wigger A: High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behav Genet. 2002, 32: 301-314. 10.1023/A:1020258104318. Wong RY, Perrin F, Oxendine SE, Kezios ZD, Sawyer S, Zhou L, Dereje S, Godwin J: Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour. 2012, 149: 1205-1240. 10.1163/1568539X-00003018. Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A: Measuring anxiety in zebrafish: a critical review. Behav Brain Res. 2010, 214: 157-171. 10.1016/j.bbr.2010.05.031. Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV: Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology. 2012, 62: 135-143. 10.1016/j.neuropharm.2011.07.037. Clark KJ, Boczek NJ, Ekker SC: Stressing zebrafish for behavioral genetics. Rev Neurosci. 2011, 22: 49-62. Steenbergen PJ, Richardson MK, Champagne DL: The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry. 2011, 35: 1432-1451. 10.1016/j.pnpbp.2010.10.010. Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK: Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res. 2010, 214: 332-342. 10.1016/j.bbr.2010.06.001. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L: The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013, 496: 498-503. 10.1038/nature12111. Griebel G, Belzung C, Perrault G, Sanger DJ: Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology (Berl). 2000, 148: 164-170. 10.1007/s002130050038. Miller BH, Schultz LE, Gulati A, Su AI, Pletcher MT: Phenotypic Characterization of a Genetically Diverse Panel of Mice for Behavioral Despair and Anxiety. PLoS One. 2010, 5: e14458-10.1371/journal.pone.0014458. Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V: The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis. 2010, 40: 46-57. 10.1016/j.nbd.2010.05.010. Lillesaar C: The serotonergic system in fish. J Chem Neuroanat. 2011, 41: 294-308. 10.1016/j.jchemneu.2011.05.009. Wang Y, Takai R, Yoshioka H, Shirabe K: Characterization and expression of serotonin transporter genes in zebrafish. Tohoku J Exp Med. 2006, 208: 267-274. 10.1620/tjem.208.267. Gould GG, Brooks BW: Frazer A: [(3)H] citalopram binding to serotonin transporter sites in minnow brains. Basic Clin Pharmacol Toxicol. 2007, 101: 203-210. 10.1111/j.1742-7843.2007.00100.x. Park JW, Heah TP, Gouffon JS, Henry TB, Sayler GS: Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure. Environ Pollut. 2012, 167: 163-170. Zon LI, Peterson RT: In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005, 4: 35-44. 10.1038/nrd1606. Rihel J, Schier AF: Behavioral screening for neuroactive drugs in zebrafish. Dev Neurobiol. 2012, 72: 373-385. 10.1002/dneu.20910. Grunwald DJ, Eisen JS: Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet. 2002, 3: 717-724. Brooks BW, Chambliss CK, Stanley JK, Ramirez A, Banks KE, Johnson RD, Lewis RJ: Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem. 2005, 24: 464-469. 10.1897/04-081R.1. Gaworecki KM, Klaine SJ: Behavioral and biochemical responses of hybrid striped bass during and after fluoxetine exposure. Aquat Toxicol. 2008, 88: 207-213. 10.1016/j.aquatox.2008.04.011. Paterson G, Metcalfe CD: Uptake and depuration of the anti-depressant fluoxetine by the Japanese medaka (Oryzias latipes). Chemosphere. 2008, 74: 125-130. 10.1016/j.chemosphere.2008.08.022. Auer PL, Doerge RW: Statistical design and analysis of RNA sequencing data. Genetics. 2010, 185: 405-416. 10.1534/genetics.110.114983. Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010, 26: 873-881. 10.1093/bioinformatics/btq057. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols. 2012, 7: 562-578. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech. 2010, 28: 511-515. 10.1038/nbt.1621. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotech. 2013, 31: 46-53. Reimand J, Arak T, Vilo J g: Profiler–a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 2011, 39: W307-W315. 10.1093/nar/gkr378. Reimand J, Kull M, Peterson H, Hansen J, Vilo J g: Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007, 35: W193-W200. 10.1093/nar/gkm226. Cummings ME, Larkins-Ford J, Reilly CR, Wong RY, Ramsey M, Hofmann HA: Sexual and social stimuli elicit rapid and contrasting genomic responses. Proc Biol Sci. 2008, 275: 393-402. 10.1098/rspb.2007.1454. Lynch KS, Ramsey ME, Cummings ME: The mate choice brain: comparing gene profiles between female choice and male coercive poeciliids. Genes Brain Behav. 2012, 11: 222-229. 10.1111/j.1601-183X.2011.00742.x. Ramsey ME, Maginnis TL, Wong RY, Brock C, Cummings ME: Identifying context-specific gene profiles of social, reproductive, and mate preference behavior in a fish species with female mate choice. Front Neurosci. 2012, 6: 62- Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30: e36-10.1093/nar/30.9.e36. McCurley AT, Callard GV: Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol. 2008, 9: 102-10.1186/1471-2199-9-102. Sousa N, Almeida OF, Wotjak CT: A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav. 2006, 5 (Suppl 2): 5-24. Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A: Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA. 1998, 95: 3239-3244. 10.1073/pnas.95.6.3239. Godwin J, Thompson R: Nonapeptides and social behavior in fishes. Horm Behav. 2012, 61: 230-238. 10.1016/j.yhbeh.2011.12.016. Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chini B, Sala M: Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl). 2012, 220: 319-330. 10.1007/s00213-011-2482-2. Thorsell A: Central neuropeptide Y in anxiety- and stress-related behavior and in ethanol intake. Ann N Y Acad Sci. 2008, 1148: 136-140. 10.1196/annals.1410.083. Neumann ID, Landgraf R: Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012, 35: 649-659. 10.1016/j.tins.2012.08.004. Karlsson RM, Holmes A, Heilig M, Crawley JN: Anxiolytic-like actions of centrally-administered neuropeptide Y, but not galanin, in C57BL/6J mice. Pharmacol Biochem Behav. 2005, 80: 427-436. 10.1016/j.pbb.2004.12.009. Slattery DA, Neumann ID: Chronic icv oxytocin attenuates the pathological high anxiety state of selectively bred Wistar rats. Neuropharmacology. 2010, 58: 56-61. 10.1016/j.neuropharm.2009.06.038. Kask A, Harro J, von Horsten S, Redrobe JP, Dumont Y, Quirion R: The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev. 2002, 26: 259-283. 10.1016/S0149-7634(01)00066-5. Missig G, Ayers LW, Schulkin J, Rosen JB: Oxytocin reduces background anxiety in a fear-potentiated startle paradigm. Neuropsychopharmacology. 2010, 35: 2607-2616. 10.1038/npp.2010.155. Trent NL, Menard JL: Infusions of neuropeptide Y into the lateral septum reduce anxiety-related behaviors in the rat. Pharmacol Biochem Behav. 2011, 99: 580-590. 10.1016/j.pbb.2011.06.009. Onaka T, Takayanagi Y, Yoshida M: Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol. 2012, 24: 587-598. 10.1111/j.1365-2826.2012.02300.x. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M: Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011, 12: 524-538. 10.1038/nrn3044. Labuschagne I, Phan KL, Wood A, Angstadt M, Chua P, Heinrichs M, Stout JC, Nathan PJ: Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology. 2010, 35: 2403-2413. 10.1038/npp.2010.123. Petrovic P, Kalisch R, Singer T, Dolan RJ: Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci. 2008, 28: 6607-6615. 10.1523/JNEUROSCI.4572-07.2008. Donner J, Sipila T, Ripatti S, Kananen L, Chen X, Kendler KS, Lonnqvist J, Pirkola S, Hettema JM, Hovatta I: Support for involvement of glutamate decarboxylase 1 and neuropeptide Y in anxiety susceptibility. Am J Med Genet B Neuropsychiatr Genet. 2012, 159B: 316-327. 10.1002/ajmg.b.32029. Wendelaar Bonga SE: The stress response in fish. Physiol Rev. 1997, 77: 591-625. Barton BA: Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002, 42: 517-525. 10.1093/icb/42.3.517. Alsop D, Vijayan MM: Molecular programming of the corticosteroid stress axis during zebrafish development. Comp Biochem Physiol A Mol Integr Physiol. 2009, 153: 49-54. 10.1016/j.cbpa.2008.12.008. Fekete EM, Zorrilla EP: Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol. 2007, 28: 1-27. 10.1016/j.yfrne.2006.09.002. Pan W, Kastin AJ: Urocortin and the brain. Prog Neurobiol. 2008, 84: 148-156. 10.1016/j.pneurobio.2007.10.008. Gysling K, Forray MI, Haeger P, Daza C, Rojas R: Corticotropin-releasing hormone and urocortin: redundant or distinctive functions?. Brain Res Brain Res Rev. 2004, 47: 116-125. 10.1016/j.brainresrev.2004.06.001. Neufeld-Cohen A, Tsoory MM, Evans AK, Getselter D, Gil S, Lowry CA, Vale WW, Chen A: A triple urocortin knockout mouse model reveals an essential role for urocortins in stress recovery. Proc Natl Acad Sci USA. 2010, 107: 19020-19025. 10.1073/pnas.1013761107. Spina MG, Merlo-Pich E, Akwa Y, Balducci C, Basso AM, Zorrilla EP, Britton KT, Rivier J, Vale WW, Koob GF: Time-dependent induction of anxiogenic-like effects after central infusion of urocortin or corticotropin-releasing factor in the rat. Psychopharmacology (Berl). 2002, 160: 113-121. 10.1007/s00213-001-0940-y. Gehlert DR, Shekhar A, Morin SM, Hipskind PA, Zink C, Gackenheimer SL, Shaw J, Fitz SD, Sajdyk TJ: Stress and central Urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor. Eur J Pharmacol. 2005, 509: 145-153. 10.1016/j.ejphar.2004.12.030. Moreau JL, Kilpatrick G, Jenck F: Urocortin, a novel neuropeptide with anxiogenic-like properties. Neuroreport. 1997, 8: 1697-1701. 10.1097/00001756-199705060-00027. Slawecki CJ, Somes C, Rivier JE, Ehlers CL: Neurophysiological effects of intracerebroventricular administration of urocortin. Peptides. 1999, 20: 211-218. 10.1016/S0196-9781(98)00160-0. Sajdyk TJ, Schober DA, Gehlert DR, Shekhar A: Role of corticotropin-releasing factor and urocortin within the basolateral amygdala of rats in anxiety and panic responses. Behav Brain Res. 1999, 100: 207-215. 10.1016/S0166-4328(98)00132-6. Venihaki M, Sakihara S, Subramanian S, Dikkes P, Weninger SC, Liapakis G, Graf T, Majzoub JA: Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: modulation by stress and attenuation of some anxiety-like behaviours. J Neuroendocrinol. 2004, 16: 411-422. 10.1111/j.1365-2826.2004.01170.x. Jamieson PM, Li C, Kukura C, Vaughan J, Vale W: Urocortin 3 modulates the neuroendocrine stress response and is regulated in rat amygdala and hypothalamus by stress and glucocorticoids. Endocrinology. 2006, 147: 4578-4588. 10.1210/en.2006-0545. Deussing JM, Breu J, Kuhne C, Kallnik M, Bunck M, Glasl L, Yen YC, Schmidt MV, Zurmuhlen R, Vogl AM: Urocortin 3 modulates social discrimination abilities via corticotropin-releasing hormone receptor type 2. J Neurosci. 2010, 30: 9103-9116. Lennartsson AK, Jonsdottir IH: Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology. 2011, 36: 1530-1539. 10.1016/j.psyneuen.2011.04.007. Diaz-Moran S, Palencia M, Mont-Cardona C, Canete T, Blazquez G, Martinez-Membrives E, Lopez-Aumatell R, Tobena A, Fernandez-Teruel A: Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav Brain Res. 2012, 228: 203-210. 10.1016/j.bbr.2011.12.002. Torner L, Neumann ID: The brain prolactin system: involvement in stress response adaptations in lactation. Stress. 2002, 5: 249-257. 10.1080/1025389021000048638. Pottinger TG, Prunet P, Pickering AD: The effects of confinement stress on circulating prolactin levels in rainbow trout (Oncorhynchus mykiss) in fresh water. Gen Comp Endocrinol. 1992, 88: 454-460. 10.1016/0016-6480(92)90240-K. Avella M, Schreck CB, Prunet P: Plasma prolactin and cortisol concentrations of stressed coho salmon, Oncorhynchus kisutch, in fresh water or salt water. Gen Comp Endocrinol. 1991, 81: 21-27. 10.1016/0016-6480(91)90121-L. Liu GX, Cai GQ, Cai YQ, Sheng ZJ, Jiang J, Mei Z, Wang ZG, Guo L, Fei J: Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology. 2007, 32: 1531-1539. 10.1038/sj.npp.1301281. Mennigen JA, Martyniuk CJ, Crump K, Xiong H, Zhao E, Popesku J, Anisman H, Cossins AR, Xia X, Trudeau VL: Effects of fluoxetine on the reproductive axis of female goldfish (Carassius auratus). Physiol Genomics. 2008, 35: 273-282. 10.1152/physiolgenomics.90263.2008. Benton CS, Miller BH, Skwerer S, Suzuki O, Schultz LE, Cameron MD, Marron JS, Pletcher MT, Wiltshire T: Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology (Berl). 2012, 221: 297-315. 10.1007/s00213-011-2574-z. Huang GJ, Ben-David E, Tort Piella A, Edwards A, Flint J, Shifman S: Neurogenomic evidence for a shared mechanism of the antidepressant effects of exercise and chronic fluoxetine in mice. PLoS One. 2012, 7: e35901-10.1371/journal.pone.0035901. Lee JH, Ko E, Kim YE, Min JY, Liu J, Kim Y, Shin M, Hong M, Bae H: Gene expression profile analysis of genes in rat hippocampus from antidepressant treated rats using DNA microarray. BMC Neurosci. 2010, 11: 152-10.1186/1471-2202-11-152. Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou YC, Pugh TJ: Alternative expression analysis by RNA sequencing. Nat Methods. 2010, 7: 843-847. 10.1038/nmeth.1503. Morey JS, Ryan JC, Van Dolah FM: Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 2006, 8: 175-193. 10.1251/bpo126. Hawlena D, Schmitz OJ: Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proc Natl Acad Sci USA. 2010, 107: 15503-15507. 10.1073/pnas.1009300107. Lima SL, Anders Pape Møller MM, Peter JBS: Stress and Decision Making under the Risk of Predation: Recent Developments from Behavioral, Reproductive, and Ecological Perspectives. Advances in the Study of Behavior. Volume, Volume 27. 1998, San Diego, CA USA: Academic Press Inc, 215-290. Santos EM, Kille P, Workman VL, Paull GC, Tyler CR: Sexually dimorphic gene expression in the brains of mature zebrafish. Comp Biochem Physiol A Mol Integr Physiol. 2008, 149: 314-324. 10.1016/j.cbpa.2008.01.010. Toth AL, Varala K, Newman TC, Miguez FE, Hutchison SK, Willoughby DA, Simons JF, Egholm M, Hunt JH, Hudson ME, Robinson GE: Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science. 2007, 318: 441-444. 10.1126/science.1146647. Sen Sarma M, Whitfield CW, Robinson GE: Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees. BMC Genomics. 2007, 8: 202-10.1186/1471-2164-8-202. Whitfield CW, Cziko A-M, Robinson GE: Gene expression profiles in the brain predict behavior in individual honey bees. Science (Washington D C). 2003, 302: 296-299. 10.1126/science.1086807. Aubin-Horth N, Landry CR, Letcher BH, Hofmann HA: Alternative life histories shape brain gene expression profiles in males of the same population. Proc Biol Sci. 2005, 272: 1655-1662. 10.1098/rspb.2005.3125. Renn SC, Aubin-Horth N, Hofmann HA: Fish and chips: functional genomics of social plasticity in an African cichlid fish. J Exp Biol. 2008, 211: 3041-3056. 10.1242/jeb.018242. Sanogo YO, Hankison S, Band M, Obregon A, Bell AM: Brain transcriptomic response of threespine sticklebacks to cues of a predator. Brain Behav Evol. 2011, 77: 270-285. 10.1159/000328221. Catalan A, Hutter S, Parsch J: Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics. 2012, 13: 654-10.1186/1471-2164-13-654. Drew RE, Settles ML, Churchill EJ, Williams SM, Balli S, Robison BD: Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics. 2012, 13: 323-10.1186/1471-2164-13-323. Wong RY, Ramsey ME, Cummings ME: Localizing brain regions associated with female mate preference behavior in a swordtail. PLoS One. 2012, 7: e50355-10.1371/journal.pone.0050355. Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB: Candidate genes for behavioural ecology. Trends Ecol Evol. 2005, 20: 96-104. 10.1016/j.tree.2004.11.017. Wada K, Howard JT, McConnell P, Whitney O, Lints T, Rivas MV, Horita H, Patterson MA, White SA, Scharff C: A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci USA. 2006, 103: 15212-15217. 10.1073/pnas.0607098103. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40: D109-D114. 10.1093/nar/gkr988. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27. Mennigen JA, Lado WE, Zamora JM, Duarte-Guterman P, Langlois VS, Metcalfe CD, Chang JP, Moon TW, Trudeau VL: Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquat Toxicol. 2010, 100: 354-364. 10.1016/j.aquatox.2010.08.016. Gunn BG, Brown AR, Lambert JJ, Belelli D: Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci. 2011, 5: 131- Zimmerberg B, Brunelli SA, Hofer MA: Reduction of rat pup ultrasonic vocalizations by the neuroactive steroid allopregnanolone. Pharmacol Biochem Behav. 1994, 47: 735-738. 10.1016/0091-3057(94)90181-3. Akwa Y, Purdy RH, Koob GF, Britton KT: The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res. 1999, 106: 119-125. 10.1016/S0166-4328(99)00101-1. Evans J, Sun Y, McGregor A, Connor B: Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology. 2012, 63: 1315-1326. 10.1016/j.neuropharm.2012.08.012. Engin E, Treit D: The anxiolytic-like effects of allopregnanolone vary as a function of intracerebral microinfusion site: the amygdala, medial prefrontal cortex, or hippocampus. Behav Pharmacol. 2007, 18: 461-470. 10.1097/FBP.0b013e3282d28f6f. Homberg JR, Olivier JD, Blom T, Arentsen T, van Brunschot C, Schipper P, Korte-Bouws G, van Luijtelaar G, Reneman L: Fluoxetine exerts age-dependent effects on behavior and amygdala neuroplasticity in the rat. PLoS One. 2011, 6: e16646-10.1371/journal.pone.0016646. Bouet V, Klomp A, Freret T, Wylezinska-Arridge M, Lopez-Tremoleda J, Dauphin F, Boulouard M, Booij J, Gsell W, Reneman L: Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment. Psychopharmacology (Berl). 2012, 221: 329-339. 10.1007/s00213-011-2580-1. Olivier JD, Blom T, Arentsen T, Homberg JR: The age-dependent effects of selective serotonin reuptake inhibitors in humans and rodents: A review. Prog Neuropsychopharmacol Biol Psychiatry. 2011, 35: 1400-1408. 10.1016/j.pnpbp.2010.09.013.