Bauschinger effect of alloys and plasticity‐induced crack closure: a finite element analysis

Fatigue and Fracture of Engineering Materials and Structures - Tập 23 Số 2 - Trang 129-139 - 2000
Pommier1, Bompard1
1Laboratoire de mécanique des sols, structures et matériaux

Tóm tắt

The effect of overloads, underloads and stress ratio on plasticity‐induced crack opening level is examined for different ‘model’ materials. This study is focused on the consequences of the Bauschinger effect on the crack opening level. Various finite element analyses were conducted using ABAQUS to test these effects, involving the Chaboche constitutive equations that take into account both the Bauschinger effect of the material and its cyclic hardening or softening. The cyclic plastic behaviour of the material is found to strongly affect the crack behaviour after an overload or an underload. The experimental data obtained on a 0.4% carbon mild steel confirm the numerical results.

Từ khóa


Tài liệu tham khảo

10.1046/j.1460-2695.1998.00083.x

WElber1971The significance of fatigue crack closure.Damage Tolerance in Aircraft Structures STP 486 ASTM Philadelphia pp.230242

RCMcClung 1996In:Finite Element Perspectives on the Mechanics of Fatigue Crack Closure Fatigue 96(Edited by G. Lütjering and H. Nowack) Vol. 1 Berlin Germany 6–10 May pp.345356

Newman JC, 1984, A crack opening stress equation for fatigue crack growth, Int. J. Fracture, 24, R131, 10.1007/BF00020751

10.1007/BF00012669

JCNewman&WElber1988Mechanics of Fatigue Crack Closure ASTM STP 982 Philadelphia

10.1111/j.1460-2695.1997.tb00405.x

10.1016/0013-7944(89)90027-1

10.1007/BF00012668

Chaboche JL, 1977, Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals, Bull. l’Academie Polonaise Des Sci. Series des Sciences et Techniques, 33

Li Z, 1990, Bauschinger effect and residual phase stresses in two ductile phase steels: Part I. The influence of phase stresses on the Bauschinger effect., Met. Trans. A, 21, 717, 10.1007/BF02671942

Li Z, 1991, Hydrostatic stresses and their effect on the macroflow behavior and microfracture mechanism of two phase alloys, Met. Trans. A, 22, 2695, 10.1007/BF02851363

10.1016/S1359-6454(96)00406-5

Feaugas X, 1997, Cyclic deformation behaviour of an α/β titanium alloy—II Internal stresses and micromechanic modelling, Acta Mater., 45, 2703, 10.1016/S1359-6454(96)00407-7

Abel A, 1966, The cyclic strain behaviour of crystals of aluminium–4% wt copper—I. The Bauschinger effect., Acta Met., 14, 1489, 10.1016/0001-6160(66)90170-2

Abel A, 1966, The cyclic strain behaviour of crystals of aluminium–4% wt copper—II. Low cycle fatigue., Acta Met., 14, 1495, 10.1016/0001-6160(66)90171-4

AAbel XChen SJin SWu1996Cyclic plasticity behaviours of 2014‐T6 aluminium alloy under nonproportional loading. In:La Revue Métallurgie‐CIT SGM 2–1196 pp.255260

PhPilvin 1996The contribution of micromechanical approaches to the modelling of inelastic behaviour of polycrystals. In:Multiaxial Fatigue and Design ESIS publication 21 MEP London pp.319

TCLindley1980Croissance des fissures de fatigue sous chargement d’amplitude variable. In:La Fatigue Des Matériaux et Des Structures(Edited by C. Bathias and J. P. Baïlon) Pub. Les Presses l’Université de Montréal p. 381.

10.1016/0013-7944(83)90051-6

VGros1996Etude de L’amorçage et de la Propagation Des Fissures de Fatigue Dans les Essieux‐Axes Ferroviaires. PhD thesis Ecole Centrale Paris 04/11/96 France.