Bases of the quantum cluster algebra of the Kronecker quiver
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2), 497–529 (2002)
Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math., 154(1), 63–121 (2003)
Sherman, P., Zelevinsky, A.: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. Mosc. Math. J., 4(4), 947–974 (2004)
Caldero, P., Zelevinsky, A.: Laurent expansions in cluster algebras via quiver representations. Mosc. Math. J., 6(3), 411–429 (2006)
Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent. Math., 172(1), 169–211 (2008)
Dupont, G.: Generic variables in acyclic cluster algebras. J. Pure and Appl. Alg., 215, 628–641 (2011)
Ding, M., Xu, F.: A Z-basis of cluster algebras for $\tilde D_4 $ . Algebra Colloq., accepted
Cerulli Irelli, G.: Cluster algebras of type A 2 (1) . Algebra Represent Theor., doi: 10.1007/s10468-011-9275-5
Ding, M., Xiao, J., Xu, F.: Integral bases of cluster algebras and representations of tame quivers. Algebra Represent Theor., doi: 10.1007/s10468-011-9317-z
Geiss, C., Leclerc, B., Schröer, J.: Generic bases for cluster algebras and the Chamber Ansatz. J. Amer. Math. Soc., 25, 21–76 (2012)
Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv., 81(3), 595–616 (2006)
Rupel, D.: On a quantum analogue of the Caldero-Chapoton formula. Int. Math. Res. Not., doi: 10.1093/imrn/rnq192 (2010)
Lampe, P.: A quantum cluster algebra of Kronecker type and the dual canonical basis. Int. Math. Res. Not., doi: 10.1093/imrn/rnq162 (2010)
Dlab, V., Ringel, C. M.: Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc., 173, (1976)
Szanto, C.: On the cardinalities of Kronecker quiver grassmainnians. Math. Z., doi: 10.1007/s00209-010-0762-x (2010)