Basal Cell Carcinoma and Its Development

Cancer Research - Tập 64 Số 3 - Trang 934-941 - 2004
Mariateresa Mancuso1, Simonetta Pazzaglia2, Mirella Tanori2, Heidi Hahn3, Paola Merola2, Simonetta Rebessi2, Michael J. Atkinson4, Vincenzo Di Majo2, Vincenzo Covelli5, Anna Saran2
1Biotechnology Unit and Radiation Protection Unit, ENEA-Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Centro Ricerche, Casaccia, Rome, Italy.
21Biotechnology Unit and
33Institute of Human Genetics, University of Goettingen, Goettingen, Germany; and
44Institute of Pathology, GSF-National Research Center for Environment and Health, Munich, Germany
52Radiation Protection Unit, ENEA-Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, Centro Ricerche, Casaccia, Rome, Italy;

Tóm tắt

Abstract Loss-of-function mutations in Patched (Ptch1) are implicated in constitutive activation of the Sonic hedgehog pathway in human basal cell carcinomas (BCCs), and inherited Ptch1 mutations underlie basal cell nevus syndrome in which a typical feature is multiple BCC occurring with greater incidence in portals of radiotherapy. Mice in which one copy of Ptch1 is inactivated show increased susceptibility to spontaneous tumor development and hypersensitivity to radiation-induced tumorigenesis, providing an ideal in vivo model to study the typical pathologies associated with basal cell nevus syndrome. We therefore examined BCC development in control and irradiated Ptch1neo67/+ mice. We show that unirradiated mice develop putative BCC precursor lesions, i.e., basaloid hyperproliferation areas arising from both follicular and interfollicular epithelium, and that these lesions progress to nodular and infiltrative BCCs only in irradiated mice. Data of BCC incidence, multiplicity, and latency support the notion of epidermal hyperproliferations, nodular and infiltrative BCC-like tumors representing different stages of tumor development. This is additionally supported by the pattern of p53 protein expression observed in BCC subtypes and by the finding of retention of the normal remaining Ptch1 allele in all nodular, circumscribed BCCs analyzed compared with its constant loss in infiltrative BCCs. Our data suggest chronological tumor progression from basaloid hyperproliferations to nodular and then infiltrative BCC occurring in a stepwise fashion through the accumulation of sequential genetic alterations.

Từ khóa


Tài liệu tham khảo

Miller S. J. Biology of basal cell carcinoma (part I). J. Am. Acad. Dermatol., 24: 1-18,  1991.

Gorlin R. J. Nevoid basal cell carcinoma syndrome. Dermatol. Clin., 13: 113-125,  1995.

Johnson R. L., Rothman A. L., Xie J., Goodrich L. V., Bare J. W., Bonifas J. M., Quinn A. G., Myers R. M., Cox D. R., Epstein E. H., Jr., Scott M. P. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science (Wash. DC), 272: 1668-1671,  1996.

Hahn H., Wicking C., Zaphiropoulous P. G., Gailani M. R., Shanley S., Chidambaram A., Vorechovsky I., Holmberg E., Unden A. B., Gillies S., Negus K., Smyth I., Pressman C., Leffell D. J., Gerrard B., Goldstein A. M., Dean M., Toftgard R., Chenevix-Trench G., Wainwright B., Bale A. E. Mutations of the human homologue of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 85: 841-851,  1996.

Gailani M. E., Bale A. E. Developmental genes and cancer role of patched in basal cell carcinoma of the skin. J. Natl. Cancer Inst. (Bethesda), 89: 1103-1109,  1997.

Ingham P. W. Transducing Hedgehog: the story so far. EMBO J., 17: 3505-3511,  1998.

Xie J., Murone M., Luoh S. M., Ryan A., Gu Q., Zhang C., Bonifas J. M., Lam C. W., Hynes M., Goddard A., Rosenthal A., Epstein E. H., Jr., de Sauvage F. J. Activating Smoothened mutations in sporadic basal cell carcinoma. Nature (Lond.), 391: 90-92,  1998.

Lacour J. P. Carcinogenesis of basal cell carcinomas genetics and molecular mechanism. Br. J. Dermatol., 146: 17-19,  2002.

Grachtchouk V., Grachtchouk M., Lowe L., Johnson T., Wei L., Wang A., de Sauvage F., Dlugosz A. A. The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J., 22: 2741-2751,  2003.

Oro A. E., Higgins K. M., Hu Z., Bonifas J. M., Epstein E. H., Jr., Scott M. Basal cell carcinoma in mice overexpressing sonic hedgehog. Science (Wash. DC), 276: 817-821,  1997.

Sato N., Leopold P. L., Crystal R. G. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J. Clin. Investig., 104: 855-864,  1999.

Jih D. M., Lyle S., Elenitsas R., Elder D. E., Cotsarelis G. Cytokeratin 15 expression in trichoepitheliomas and a subset of basal cell carcinomas suggests they originate from hair follicle stem cells. J. Cutan. Pathol., 26: 113-118,  1999.

Hahn H., Wojnowski L., Zimmer A. M., Hall J., Miller G., Zimmer A. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat. Med., 4: 619-622,  1998.

Goodrich L. V., Milenkovic L., Higgins K. M., Scott M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science (Wash. DC), 277: 1109-1113,  1997.

Pazzaglia S., Mancuso M., Atkinson M. J., Tanori M., Rebessi S., Di Majo V., Covelli V., Hanh H., Saran A. High incidence of medulloblastoma following X-ray irradiation of newborn Ptch1 heterozygous mice. Oncogene, 21: 7580-7584,  2002.

Aszterbaum M., Epstein J., Oro A., Douglas V., LeBoit P. E., Scott M. P., Epstein E. H., Jr. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat. Med., 5: 1285-1291,  1999.

Bastiaens M. T., Hoefnagel J. J., Bruijn J. A., Westendorp R. G. J., Vermeer B. J., Bouwes Bavinck J. N. Differences in age, site distribution, and sex between nodular and superficial basal cell carcinoma indicate different types of tumors. J. Investig. Dermatol., 110: 880-884,  1998.

Morgan B. A., Orkin R. W., Noramly S., Perez A. Stage-specific effects of sonic hedgehog expression in the epidermis. Dev. Biol., 201: 1-12,  1998.

Oro A. E., Higgins K. Hair cycle regulation of hedgehog signal reception. Dev. Biol., 255: 238-248,  2003.

Gat U., DasGupta R., Degenstein L., Fuchs E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell, 95: 605-614,  1998.

Nilsson M., Unden A. B., Krause D., Malmqwist U., Raza K., Zaphiropoulos P. G., Toftgard R. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl. Acad. Sci. USA, 97: 3438-3443,  2000.

Pontén F., Berg C., Ahmadian A., Ren Z-P., Nistér M., Lundeberg J., Uhlén M., Pontén J. Molecular pathology in basal cell cancer with p53 as a genetic marker. Oncogene, 15: 1059-1067,  1997.

Zhang H., Ping X. L., Lee P. K., Wu X. L., Yao Y. J., Zhang M. J., Silvers D. N., Ratner D., Malhotra R., Peacocke M., Tsou H. C. Role of PTCH and p53 genes in early-onset basal cell carcinoma. Am. J. Pathol., 158: 381-385,  2001.

Auepemkiate S., Boonyaphiphat P., Thongsuksai P. p53 expression related to the aggressive infiltrative histopathological feature of basal cell carcinoma. Histopathology, 40: 568-573,  2002.

Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell, 61: 759-767,  1990.

Kalderon D. Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell. Biol., 12: 523-531,  2002.

Brash D. E., Ponten J. Skin precancer. Cancer Surv., 32: 69-113,  1998.

Saldanha G. The Hedgehog signalling pathway and cancer. J. Pathol., 193: 427-432,  2001.

Grachtchouk M., Mo R., Yu S., Zhang X., Sasaki H., Hui C. C., Dlugosz A. A. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat. Genet., 24: 216-217,  2000.

Watkins D. N., Berman D. M., Burkholder S. G., Wang B., Beachy P. A., Baylin S. B. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature (Lond.), 422: 313-317,  2003.

Ramachandran S., Fryer A. A., Lovatt T. J., Smith A. G., Lear J. T., Jones P. W., Strange R. C. Combined effects of gender, skin type and polymorphic genes on clinical phenotype: use of rate of increase in numbers of basal cell carcinomas as a model system. Cancer Lett., 189: 175-181,  2003.

Rogers G. S., Flowers J. L., Pollack S. V., McCarty K. S., Jr. Determination of sex steroid receptor in human basal cell carcinoma. J. Am. Acad. Dermatol., 18: 1039-1043,  1988.

Chang-Claude J., Dunning A., Schnitzbauer U., Galmbacher P., Tee L., Wjst M., Chalmers J., Zemzoum I., Harbeck N., Pharoah P. D., Hahn H. The patched polymorphism Pro1315Leu (C3944T) may modulate the association between use of oral contraceptives and breast cancer risk. Int. J. Cancer, 6: 779-783,  2003.

Kuwabara P. E., Labouesse M. The sterol-sensing domain: multiple families, a unique role?. Trends Genet., 18: 193-201,  2002.

Muller-Rover S., Handjiski B., van der Veen C., Eichmuller S., Foitzik K., McKay I. A., Stenn K. S., Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Investig. Dermatol., 117: 3-15,  2001.

Callahan C. A., Oro A. E. Monstrous attempts at adnexogenesis: regulating hair follicle progenitors through Sonic hedgehog signaling. Curr. Opin. Genet. Dev., 11: 541-546,  2001.

Rubel J. R., Milford E. L., Abdi R. Cutaneous neoplasms in renal transplant recipients. Eur. J. Dermatol., 12: 532-535,  2002.