Barrier layers for Cu ULSI metallization

Journal of Electronic Materials - Tập 30 - Trang 336-344 - 2001
Yosi Shacham-Diamand1
1Department of Physical Electronics, Tel-Aviv University, Ramat-Aviv, Israel

Tóm tắt

Barrier layers are integral parts of many metal interconnect systems. In this paper we review the current status of barrier layers for copper metallization for ultra-large-scale-integration (ULSI) technology for integrated circuits (ICs) manufacturing. The role of barrier layers is reviewed and the criteria that determine the process window, i.e. the optimum barrier thickness and the deposition processes, for their manufacturing are discussed. Various deposition methods are presented: physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), electroless deposition (ELD), and atomic layer CVD (ALCVD) for barrier layers implementation. The barrier integration methods and the interaction between the barrier and the copper metallization are presented and discussed. Finally, the common inspection and metrology for barrier layer are critically reviewed.

Tài liệu tham khảo

J.W. Mayer and S.S. Lau, Electron. Mater. Sci.: For Integrated Circuit in Si and GaAs New York: Macmillan Publishing Co., 1990). M.-A. Nicolet, Thin Sold Films 52, 415 (1978). Int. Technology Roadmap for Semiconductors 2000 Update (Austin, TX: SEMATECH, 2000). T. Kikkawa, Proc. Adv. Metallization Conf. (AMC 1998) (Warrendale, PA: MRS, 1998), p. 705. H.B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI (Reading, MA: Addison-Wesley, 1990). D. Edelstein et al. IEDM Technical Digest 773 (1997) pp. 773–776. T. Nitta, T. Ohmi, M. Otsuki, T. Takewaki, and T. Shibata, J. Electrochem. Soc. 139, 922 (1992). M. Uekudo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano, and T. Ohta, Thin Solid Films 286, 170 (1996). T. Smy, Proc. Adv. Metallization Conf. (AMC 2000) (Warrendale, PA: MRS, 2001). S.K. Wang, Proc. Adv. Metallization Conf. (AMC 1993), (Pittsburgh, PA: MRS, 1994). C.E. Ramberg, et al., Microelectronics Microengineering 50 (Dordrecht, Netherlands: Elsevier, 2000), pp. 357–368. M. Angyal (Ph.D. Thesis, School of Electrical Engineering, Cornell University, 1996). J.O. Olowalafe, C.J. Mogab, R.B. Gregery, and M. Kotte, J. Appl. Phys. 72, 4099 (1992). Se-Joon Im, Soo-Hyun Kim, Ki-Chui Park, Sung-Lae Cho, and Ki-Bum Kim, Proc. Adv. Metallization Conf. (AMC 1999) (Warrendale, PA: MRS, 1999), p. 239. C.J. Uchibori, N. Shimizu, and T. Nakamura, Proc. Adv. Metallization Conf. (AMC 1999) (Warrendale, PA: 1999), p. 233. M.-A. Nicolet, I. Suni, and M. Finneti, Solid State Technol. 129 (Dec. 1983). E. Kollawa, P.J. Pokela, J.S. Reid, J.S. Chen, and M.-A. Nicolet. Appl. Surf. Sci. 53, 373 (1991). H. Li, I. Heyvaert, S. Jin, F. Lanckemans, B. Brijs, H. Bender, K. Maex, and L. Froyen, Proc. of the Adv. Metallization Conf. (AMC 2000) (Warrendale, PA: MRS, 1991). A. Kohn, M. Eizenberg Y. Shacham-Diamand, E. Sverdlov, and B. Israel, Mater. Sci. (B) A 302 (2001). K.-E. Elers, V. Saanila, P.J. Soininen, and S. Haukka, (Paper presented at the Advanced Metallization Conference, San-Diego, CA, 2000). Y. Shacham-Diamand and S. Lopatin, Electrochemica Acta 44, 3639 (1999). J.M. Gilet, J. Torres, M. Swaanen, and R. Gonella, Proc. Adv. Metallization Conf. (AMC 2000), (Warrendale, PA: MRS, 2000), pp. 251–256. C. Ryu, A.L.S. Loke, T. Nogami, and S.S. Wong, IEEE Int. Reliability Phys. Symp. Proc. (New York: IEEE, 1997), pp. 201–205. S.S. Wong et al., IITC (New York: IEEE, 1998), pp. 107–108. M. Sekiguchi, H. Sato, T. Harade, and S. Domae, Proc. Adv. Metallization Conf. (AMC 1999) (Warrendale, PA: MRS, 1999), p. 271. C.S. Liu, S.L. Shue, C.H. Yu, and M.S. Liang, Proc. Adv. Metallization Conf. (AMC 1999) (Warrendale, PA: MRS, 2000), pp. 265–269. M.Y. Kwak, D.H. Shin, T.W. Wang, and K.N. Kim, Phys. Status Solidi (1999). Y. Shacham-Diamand, B. Israel, and Y. Sverdlov, J. Microelectron. Eng. (2000). Pei-I Wang, S.P. Murarka, W.A. Lanford, and S. Bedell, Mater. Res. Symp. Proc. 514, 281 (1998).