Các Bacteriocin Tạo Ra Bởi Vi Khuẩn Lactic Được Tách Chiết Từ Phô Mai Trong Khoảng Thời Gian 2009–2021: Một Đánh Giá

Probiotics and Antimicrobial Proteins - Tập 14 - Trang 238-251 - 2021
Lorena Trejo-González1, Ana-Estefanía Gutiérrez-Carrillo1, Adriana-Inés Rodríguez-Hernández1, Ma. del Rocío López-Cuellar1, Norberto Chavarría-Hernández1
1Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, Tulancingo, Mexico

Tóm tắt

Bài khảo sát này trình bày về các bài báo nghiên cứu gốc được công bố trong các tạp chí khoa học uy tín về việc tách chiết vi khuẩn axit lactic (LAB) từ phô mai trên toàn thế giới, trong đó các nhà nghiên cứu đánh giá khả năng sản xuất bacteriocin của những mẫu tách chiết này nhằm tìm kiếm các peptide chức năng mới có tiềm năng ứng dụng trong công nghệ sinh học. Trong khoảng thời gian nghiên cứu, đã có 71 bài báo được xuất bản, với sự đóng góp từ các lục địa là Mỹ (45%), Châu Á (28%) và Châu Âu (21%), trong đó các quốc gia đóng góp nhiều nhất cho mỗi lục địa là Brazil-Mỹ-Mexico, Thổ Nhĩ Kỳ-Trung Quốc, và Pháp-Ý. Phần lớn các LAB được tách chiết thuộc các chi như Enterococcus (35%), Lactobacillus (30%), Lactococcus (14%), và Pediococcus (10%), chủ yếu đến từ các loại phô mai mềm (64%), cứng (27%) và bán cứng (9%). Ngoài ra, các học giả chủ yếu tập trung vào khả năng ứng dụng trong lĩnh vực bảo quản thực phẩm sinh học (81%) và dược phẩm (18%).

Từ khóa

#vi khuẩn axit lactic #bacteriocin #phô mai #công nghệ sinh học

Tài liệu tham khảo

Franz CMAP, Holzapfel WH (2011) The importance of understanding the stress physiology of lactic acid bacteria. In: Tsakalidou E, Papadimitriou K (ed) Stress responses of lactic acid bacteria. Springer, USA, pp 3–20. https://doi.org/10.1007/978-0-387-92771-8_1 Todorov SD, Holzapfel W, Nero LA (2015) Characterization of a novel bacteriocin produced by Lactobacillus plantarum ST8SH and some aspects of its mode of action. Ann Microbiol 66(3):949–962. https://doi.org/10.1007/s13213-015-1180-4 Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in gram-positive bacteria. In: Riley MA, Chavan MA (eds) Bacteriocins: ecology and evolution. Springer, Germany, pp 45–92 Bogovič-Matijašić B, Rogelj I (2011) Bacteriocins of probiotics and enteric cytoprotection. In: Malago JJ, Koninkx JFJG, Marinsek-Logar R (ed) Probiotic bacteria and enteric infections. Cytoprotection by probiotic bacteria. Springer, Netherlands, pp 313–354. https://doi.org/10.1007/978-94-007-0386-5_14 Zimina M, Babich O, Prosekov A, Sukhikh S, Ivanova S, Shevchenko M, Noskova S (2020) Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics 9(9)553. https://doi.org/10.3390/antibiotics9090553 Negash AW, Tsehai BA (2020) Current applications of bacteriocin. Int J Microbol 2020:1–7. https://doi.org/10.1155/2020/4374891 Ashaolu TJ (2019) A review on selection of fermentative microorganisms for functional foods and beverages: the production and future perspectives. Int J Food Sci Tech 54(8):2511–2519. https://doi.org/10.1111/ijfs.14181 Steinkraus KH (2002) Fermentations in world food processing. Compr Rev Food Sci Food Saf 1:23–32 Panwar H, Calderwood D, Grant IR, Grover S, Green BD (2014) Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential. Eur J Nutr 53(7):1465–1474. https://doi.org/10.1007/s00394-013-0649-9 Fernandez-Juri MG, Muzzolon JA, Dalcero AM, Magnoli CE (2011) Effect of acid lactic bacteria isolated from faeces of healthy dogs on growth parameters and aflatoxin B1 production by Aspergillus species in vitro. Mycotox Res 27(4):273–280. https://doi.org/10.1007/s12550-011-0104-9 Niederle MV, Bosch J, Ale CE, Nader-Macias ME, Aristimuno Ficoseco C, Toledo LF, Valenzuela-Sanchez A, Soto-Azat C, Pasteris SE (2019) Skin-associated lactic acid bacteria from North American bullfrogs as potential control agents of Batrachochytrium dendrobatidis. PLoS One 14(9):e0223020. https://doi.org/10.1371/journal.pone.0223020 Terai T, Okumura T, Imai S, Nakao M, Yamaji K, Ito M, Nagata T, Kaneko K, Miyazaki K, Okada A, Nomura Y, Hanada N (2015) Screening of probiotic candidates in human oral bacteria for the prevention of dental disease. PLoS One 10(6):e0128657. https://doi.org/10.1371/journal.pone.0128657 Todorov SD, Botes M, Danova ST, Dicks LM (2007) Probiotic properties of Lactococcus lactis ssp. lactis HV219, isolated from human vaginal secretions. J Appl Microbiol 103(3):629–39. https://doi.org/10.1111/j.1365-2672.2007.03290.x Teneva-Angelova T, Beshkova D (2015) Non-traditional sources for isolation of lactic acid bacteria. Ann Microbiol 66(1):449–459. https://doi.org/10.1007/s13213-015-1127-9 Mattick ATR, Hirsch A, Berridge NJ (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. The Lancet 250(6462):5–8. https://doi.org/10.1016/S0140-6736(47)90004-4 FDA (2000) Nisin GRAS Notice Information. Center for Food Safety and Applied Nutrition. https://www.fda.gov/downloads/food/ingredientspackaginglabeling/gras/noticeinventory/ucm266587.pdf EFSA (2017) Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA J 15(12):e05063. https://doi.org/10.2903/j.efsa.2017.5063 FDA (2016) GRAS Notice for colicin antimicrobial product for use on meat products. Center for Food Safety and Applied Nutrition. http://www.fda.gov/Food/IngredientsPackagingLabeling/ GRAS/NoticeInventory/default.htm Okuda K, Zendo T, Sugimoto S, Iwase T, Tajimam A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57(11):5572–5579. https://doi.org/10.1128/AAC.00888-13 Zainodini N, Hassanshahi G, Hajizadeh M, Khanamani Falahati-Pour S, Mahmoodi M, Mirzaei MR (2018) Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac J Cancer Prev 19(8):2217–2222. https://doi.org/10.22034/APJCP.2018.19.8.2217 Tsai TL, Li AC, Chen YC, Liao YS, Lin TH (2015) Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumour Biol 36(5):3775–3789. https://doi.org/10.1007/s13277-014-3018-2 Elnagdy S, AlKhazindar M (2020) The potential of antimicrobial peptides as an antiviral therapy against COVID-19. ACS Pharmacol Transl Sci 3(4):780–782. https://doi.org/10.1021/acsptsci.0c00059 Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:1087–1093. https://doi.org/10.1093/nar/gkv1278 Papademas P, Bintsis T (2018) Global cheesemaking technology. Cheese quality and characteristics. John Wiley & Sons, India Fox PF, Guinee TP, Cogan TM, McSweeney PLH (2017) Fundamentals of cheese science. Springer, New York Yang E, Fan L, Jiang Y, Doucette C, Fillmore S (2012) Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express 2(1):48. http://doi.org/https://doi.org/10.1186/2191-0855-2-48 Aria M, Cuccurullo C (2017) bibliometrix : an R-tool for comprehensive science mapping analysis. J Informetr 11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007 Karska-Wysocki B, Bazo M, Smoragiewicz W (2010) Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 165(8):674–686. https://doi.org/10.1016/j.micres.2009.11.008 Tkhruni FN, Aghajanyan AE, Balabekyan TR, Khachatryan TV, Karapetyan KJ (2020) Characteristic of bacteriocins of Lactobacillus rhamnosus BTK 20–12 potential probiotic strain. Probiotics Antimicrob Proteins 12(2):716–724. https://doi.org/10.1007/s12602-019-09569-y Heredia-Castro PY, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B (2017) Bacteriocinas de bacterias ácido lácticas: Mecanismos de acción y actividad antimicrobiana contra patógenos en quesos. Interciencia 42(6):340–346 Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229. https://doi.org/10.1016/j.jrras.2014.03.002 Daw Mohamed AFFR (1996) Bacteriocins: nature, function and structure. Micron 27:467–479 Nuraida L (2015) A review: health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Hum Well 4(2):47–55. https://doi.org/10.1016/j.fshw.2015.06.001 Cavicchioli VQ, Camargo AC, Todorov SD, Nero LA (2019) Potential control of Listeria monocytogenes by bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC strains isolated from artisanal cheese. Probiotics Antimicrob Proteins 11(2):696–704. https://doi.org/10.1007/s12602-018-9449-0 Campagnollo FB, Margalho LP, Kamimura BA, Feliciano MD, Freire L, Lopes LS, Alvarenga VO, Cadavez VAP, Gonzales-Barron U, Schaffner DW, Sant’Ana AS (2018) Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol 73:288–297. https://doi.org/10.1016/j.fm.2018.02.006 García-Cano I, Serrano-Maldonado CE, Olvera-García M, Delgado-Arciniega E, Peña-Montes C, Mendoza-Hernández G, Quirasco M (2014) Antibacterial activity produced by Enterococcus spp. isolated from an artisanal Mexican dairy product, Cotija cheese. LWT - Food Sci Technol 59(1):26–34. https://doi.org/10.1016/j.lwt.2014.04.059 Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16(9):1058–1071. https://doi.org/10.1016/j.idairyj.2005.10.026 Sip A, Więckowicz M, Olejnik-Schmidt A, Grajek W (2012) Anti-listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland. Food Control 26(1):117–124. https://doi.org/10.1016/j.foodcont.2012.01.014 Vera Pingitore E, Todorov SD, Sesma F, Franco BD (2012) Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol 32(1):38–47. https://doi.org/10.1016/j.fm.2012.04.005 Gutiérrez-Cortés C, Suarez H, Buitrago G, Nero LA, Todorov SD (2018) Characterization of bacteriocins produced by strains of Pediococcus pentosaceus isolated from Minas cheese. Ann Microbiol 68:383–398. https://doi.org/10.1007/s13213-018-1345-z Cabral Carvalhaes Costa AC, Neves Pereira A, De Andrade e Silva AC, Alves da Silva F, De Oliverira Ribeiro K, Sapateiro Torres IM, Pereira De Martinis EC, Farías Alves V (2018) Antilisterial and antistaphylococcal activity of a Lactococcus lactis strain isolated from Brazilian fresh Minas cheese. J Food Saf 39(1). https://doi.org/10.1111/jfs.12593 Nespolo CR, Brandelli A (2010) Production of bacteriocin-like substances by lactic acid bacteria isolated from regional ovine cheese. Braz J Microbiol 41:1009–1018 Olbrich dos Santos KM, Vieira ADS, Rocha CRC, do Nascimento JCF, de Souza Lopes AC, Bruno LM, Carvalho JDG, de Melo Franco BDG, Todorov SD (2014) Brazilian artisanal cheeses as a source of beneficial Enterococcus faecium strains: characterization of the bacteriocinogenic potential. Ann Microbiol 64(4):1463–1471. https://doi.org/10.1007/s13213-013-0789-4 Tulini FL, Carrer Gomes B, Pereira de Martinis EC (2011) Partial purification and characterization of a bacteriocin produced by Enterococcus faecium 130 isolated from mozzarella cheese. Ciência Tecnol Alime 31(1):155–159 Fernandes P, Loureiro D, Monteiro V, Ramos C, Nero LA, Todorov SD, Guerreiro JS (2017) Lactobacillus plantarum isolated from cheese: production and partial characterization of bacteriocin B391. Ann Microbiol 67(6):433–442. https://doi.org/10.1007/s13213-017-1275-1 Guerreiro J, Monteiro V, Ramos C, Franco BD, Martinez RC, Todorov SD, Fernandes P (2014) Lactobacillus pentosus B231 isolated from a portuguese PDO cheese: production and partial characterization of its bacteriocin. Probiotics Antimicrob Proteins 6(2):95–104. https://doi.org/10.1007/s12602-014-9157-3 Chacon Ruiz Martinez R, Wachsman M, Torres NI, LeBlanc JG, Todorov SD, Franco BD (2013) Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiol 34(2):376–381. https://doi.org/10.1016/j.fm.2013.01.011 Morales-Estrada AI, Ruiz EA, López-Merino A, Contreras-Rodríguez A, Gutierrez-Mendez N (2016) Partial characterization of bacteriocin produced by halotolerant Pediococcus acidilactici strain QC38 isolated from traditional Cotija cheese. Pol J Microbiol 65(3):279–285 Du L, Somkuti GA, Renye JA Jr, Huo G (2012) Properties of Durancin Gl, a new antilisterial bacteriocin produced by Enterococcus Durans 41d. J Food Saf 32(1):74–83. https://doi.org/10.1111/j.1745-4565.2011.00346.x Ribeiro SC, Coelho MC, Todorov SD, Franco BD, Dapkevicius ML, Silva CC (2014) Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow’s milk cheese. J Appl Microbiol 116(3):573–585. https://doi.org/10.1111/jam.12388 Ołdak A, Zielińska D, Łepecka A, Długosz E, Kołożyn-Krajewska D (2020) Lactobacillus plantarum strains isolated from Polish regional cheeses exhibit anti-staphylococcal activity and selected probiotic properties. Probiotics Antimicrob Proteins 12:1025–1038. https://doi.org/10.1007/s12602-019-09587-w Milioni C, Martínez B, Degl’Innocenti S, Turchi B, Fratini F, Cerri D, Fischetti R (2015) A novel bacteriocin produced by Lactobacillus plantarum LpU4 as a valuable candidate for biopreservation in artisanal raw milk cheese. Dairy Sci & Technol 95(4):479–494. https://doi.org/10.1007/s13594-015-0230-9 Mirkovic N, Radulovic Z, Obradovic D, Uzelac G, Topisirovic L, Lozo J, Kojic M (2015) Isolation and characterisation of cacteriocin and aggregation-promoting factor production in Lactococcus lactis ssp. lactis BGBM50 Strain. Food Technol Biotechnol 53(2):237–242. https://doi.org/10.17113/ftb.53.02.15.3846 Ahmadova A, Todorov SD, Choiset Y, Rabesona H, Mirhadi Zadi T, Kuliyev A, Franco BDGdM, Chobert JM, Haertlé T (2013) Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control 30(2):631–641. https://doi.org/10.1016/j.foodcont.2012.08.009 Nayyeri N, Edalatian Dovom MR, Habibi Najafi MB, Bahreini M (2017) A preliminary study on antifungal activity of lactic acid bacteria isolated from different production stages of Lighvan cheese on Penicillium expansum and Rhodotorula mucilaginosa. J Food Meas Charact 11(4):1734–1744. https://doi.org/10.1007/s11694-017-9554-x Jabbari V, Khiabani MS, Mokarram RR, Hassanzadeh AM, Ahmadi E, Gharenaghadeh S, Karimi N, Kafil HS (2017) Lactobacillus plantarum as a probiotic potential from Kouzeh cheese (Traditional Iranian Cheese) and its antimicrobial activity. Probiotics Antimicrob Proteins 9(2):189–193. https://doi.org/10.1007/s12602-017-9255-0 İspirli H, Demirbas F, Dertli E (2017) Characterization of functional properties of Enterococcus spp. isolated from Turkish white cheese. LWT - Food Sci Technol 75:358–365. https://doi.org/10.1016/j.lwt.2016.09.010 Liu H, Zhang L, Yi H, Han X, Gao W, Chi C, Song W, Li H, Liu C (2016) A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese. World J Microbiol Biotechnol 32(2):21. https://doi.org/10.1007/s11274-015-1973-4 Pei J, Li X, Han H, Tao Y (2018) Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control 84:111–117. https://doi.org/10.1016/j.foodcont.2017.07.034 El-Ghaish S, Khalifa M, Elmahdy A, (2017) Antimicrobial impact for Lactococcus lactis subsp. lactis A15 and Enterococcus faecium A15 isolated from some traditional Egyptian dairy products on some pathogenic bacteria. J Food Biochem 41(1):e12279. https://doi.org/10.1111/jfbc.12279 De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Apl Microbiol 23(1):130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl microbiol 29(6):807–813. https://doi.org/10.1128/am.29.6.807-813.1975 Somkuti GA, Steinberg DH (1979) Adaptability of Streptococcus thermophilus to lactose, glucose and galactose. J Food Prot 42(11):881–887. https://doi.org/10.4315/0362-028x-42.11.881 Garsa AK, Kumariya R, Sood SK, Kumar A, Kapila S (2014) Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrob Proteins 6(1):47–58. https://doi.org/10.1007/s12602-013-9153-z Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22(8). https://doi.org/10.3390/molecules22081255 Garcia-Curiel L, Lopez-Cuellar MR, Rodriguez-Hernandez AI, Chavarria-Hernandez N (2021) Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World J Microbiol Biotechnol 37(1):15. https://doi.org/10.1007/s11274-020-02973-5 Campanero C, Munoz-Atienza E, Diep DB, Feito J, Arbulu S, Del Campo R, Nes IF, Hernandez PE, Herranz C, Cintas LM (2020) Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90. PLoS One 15(3):e0229417. https://doi.org/10.1371/journal.pone.0229417 Zou J, Jiang H, Cheng H, Fang J, Huang G (2018) Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 117:781–789. https://doi.org/10.1016/j.ijbiomac.2018.05.233 López-Cuellar MdR, Rodríguez-Hernández AI, Chavarría-Hernández N (2016) LAB bacteriocin applications in the last decade. Biotechnol Biotechnol Equip 30(6):1039–1050. https://doi.org/10.1080/13102818.2016.1232605 Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto K (2009) Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol 75(6):1552–8. https://doi.org/10.1128/AEM.02299-08 Favaro L, Basaglia M, Casella S, Hue I, Dousset X, de Melo G, Franco BD, Todorov SD (2014) Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese. Food Microbiol 38:228–239. https://doi.org/10.1016/j.fm.2013.09.008 Alegria A, Delgado S, Roces C, Lopez B, Mayo B (2010) Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Int J Food Microbiol 143(1–2):61–66. https://doi.org/10.1016/j.ijfoodmicro.2010.07.029 Simova ED, Beshkova DB, Dimitrov ZhP (2009) Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. J Appl Microbiol 106(2):692–701. https://doi.org/10.1111/j.1365-2672.2008.04052.x Rushdy AA, Gomaa EZ (2013) Antimicrobial compounds produced by probiotic Lactobacillus brevis isolated from dairy products. Ann Microbiol 63(1):81–90. https://doi.org/10.1007/s13213-012-0447-2 Moraes PM, Perin LM, Tassinari Ortolani MB, Yamazi AK, Viçosa GN, Nero LA (2010) Protocols for the isolation and detection of lactic acid bacteria with bacteriocinogenic potential. LWT - Food Sci Technol 43(9):1320–1324. https://doi.org/10.1016/j.lwt.2010.05.005 Todorov SD, Cavicchioli VQ, Ananieva M, Bivolarski VP, Vasileva TA, Hinkov AV, Todorov DG, Shishkov S, Haertle T, Iliev IN, Nero LA, Ivanova IV (2020) Expression of coagulin A with low cytotoxic activity by Pediococcus pentosaceus ST65ACC isolated from raw milk cheese. J Appl Microbiol 128(2):458–472. https://doi.org/10.1111/jam.14492 Ibrahim F, Siddiqui NN, Aman A, Qader SAU, Ansari A (2019) Characterization, cytotoxic analysis and action mechanism of antilisterial bacteriocin produced by Lactobacillus plantarum isolated from cheddar cheese. Int J Pept Res Ther 26(4):1751–1764. https://doi.org/10.1007/s10989-019-09982-5 Muhammad Z, Ramzan R, Abdelazez A, Amjad A, Afzaal M, Zhang S, Pan S (2019) Assessment of the antimicrobial potentiality and functionality of Lactobacillus plantarum strains isolated from the conventional inner Mongolian fermented cheese against foodborne pathogens. Pathogens 8(2). https://doi.org/10.3390/pathogens8020071 Hammi I, Delalande F, Belkhou R, Marchioni E, Cianferani S, Ennahar S (2016) Maltaricin CPN, a new class IIa bacteriocin produced by Carnobacterium maltaromaticum CPN isolated from mould-ripened cheese. J Appl Microbiol 121(5):1268–1274. https://doi.org/10.1111/jam.13248 Winkelströter LK, Tulini FL, De Martinis ECP (2015) Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. LWT - Food Scie Technol 64(2):586–592. https://doi.org/10.1016/j.lwt.2015.06.014 de Paula AT, Jeronymo-Ceneviva AB, Silva LF, Todorov SD, Franco BD, Choiset Y, Haertle T, Chobert JM, Dousset X, Penna AL (2014) Leuconostoc mesenteroides SJRP55: a bacteriocinogenic strain isolated from Brazilian water buffalo mozzarella cheese. Probiotics Antimicrob Proteins 6(3–4):186–197. https://doi.org/10.1007/s12602-014-9163-5 Kumari A, Akkoc N, Akcelik M (2012) Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171. World J Microbiol Biotechnol 28(4):1647–55. https://doi.org/10.1007/s11274-011-0971-4 Liu G, Griffiths MW, Wu P, Wang H, Zhang X, Li P (2011) Enterococcus faecium LM-2, a multi-bacteriocinogenic strain naturally occurring in “Byaslag”, a traditional cheese of inner Mongolia in China. Food Control 22(2):283–289. https://doi.org/10.1016/j.foodcont.2010.07.023 Renye JAJr, Somkuti GA, Paul M, Van Hekken DL (2009) Characterization of antilisterial bacteriocins produced by Enterococcus faecium and Enterococcus durans isolates from Hispanic-style cheeses. J Ind Microbiol Biotechnol 36(2):261–268. https://doi.org/10.1007/s10295-008-0494-7 Gulahmadov SG, Abdullaeva NF, Guseinova NF, Kuliev AA, Ivanova IV, Dalgalarondo M, Chobert JM, Haertlée T (2009) Isolation and characterization of bacteriocin-like inhibitory substances from lactic acid bacteria isolated from Azerbaijan cheeses. Appl Biochem Microbiol 45(3):266–271. https://doi.org/10.1134/s0003683809030053 Zheng J, Wittouck S, Salvetti E, Franz C, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Ganzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107