Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tương tác giữa vi khuẩn và đất sét: Những thay đổi cấu trúc trong smectite được kích hoạt trong quá trình hình thành màng sinh học
Tóm tắt
Vi khuẩn đóng vai trò quan trọng trong việc xác định các tính chất và hành vi của khoáng vật đất sét trong môi trường tự nhiên, và những tương tác này có tiềm năng lớn trong việc tạo ra các màng sinh học ổn định cũng như các vị trí lưu trữ carbon trong đất. Tuy nhiên, hiểu biết của chúng ta về những tương tác này còn rất hạn chế. Mục đích của nghiên cứu này là nhằm cải thiện hiểu biết về ảnh hưởng của các màng sinh học được tạo ra bởi vi khuẩn đến sự mở rộng lớp giữa của đất sét. Các hỗn hợp của đất sét hectorite dạng keo 2 nước và vi khuẩn Pseudomonas syringae trong một dung dịch môi trường tối thiểu đã phát triển thành một khối tụ màng sinh học giàu polisaccharide qua các thí nghiệm theo thời gian kéo dài lên tới 1 tuần. Phân tích X-quang cho thấy sau khi tụ lại, đất sét có sự co lại lớp giữa ban đầu. Các thí nghiệm ngắn hạn, kéo dài tới 72 giờ, chứng kiến sự giảm giá trị d001 từ 1,50 xuống 1,26 nm. Sự co lại lớp giữa ban đầu sẽ theo sau trong các thí nghiệm dài hạn (lên tới 1 tuần) với sự mở rộng giá trị d001 lên tới 1,84 nm. Sự mở rộng này có khả năng là kết quả của sự xuất hiện của các phân tử polymer lớn, do màng sinh học sản xuất, nằm trong vị trí lớp giữa. Sản phẩm đất sét hữu cơ này có thể cung cấp một môi trường lưu trữ tiềm năng cho carbon trong bối cảnh thuộc địa vi sinh vật.
Từ khóa
#vi khuẩn #đất sét #màng sinh học #polisaccharide #carbon #khoáng vậtTài liệu tham khảo
Alimova, A., Roberts, M., Katz, A., Rudolph, E., Steiner, J.C., Alfano, R.R., and Gottlieb, P. (2006) Effects of smectite clay on biofilm formation by microorganisms. Biofilms, 3, 47–54.
Amellal, N., Burtin, G., Bartoli, F., and Heulin, T. (1998) Colonization of wheat roots by an exopolysaccharide-producing pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Applied and Environmental Microbiology, 64, 3740–3747.
Anderson, J.U. (1961) An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays and Clay Minerals, 10, 380–388.
Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, P.K.M., and Visscher, P.T. (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185, 131–145.
Bitton, G., Henis, Y., and Lahav, N. (1972) Effect of several clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet irradiation. Applied Microbiology, 23, 870–874.
Bloemberg, G.V. and Lugtenberg, B.J.J. (2004) Bacterial Biofilms on Plants: Relevance and Phenotypic Aspects. ASM Press, Washington, D.C.
Bulson, P.C., Johnstone, D.L., Gibbons, H.L., and Funk, W.H. (1984) Removal and inactivation of bacteria during alum treatment of a lake. Applied and Environmental Microbiology, 48, 425–430.
Burton, G.A., Jr., Gunnison, D., and Lanza, G.R. (1987) Survival of pathogenic bacteria in various freshwater sediments. Applied and Environmental Microbiology, 53, 633–638.
Chafetz, H.S. and Buczynski, C. (1992) Bacterially induced lithification of microbial mats. Palaios, 7, 277–293.
Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., and Marrie, T.J. (1987) Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464.
Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. (1995) Microbial biofilms. Annual Review of Microbiology, 49, 711–745.
Curry, K.J., Bennett, R.H., Mayer, L.M., Curry, A., Abril, M., Biesiot, P.M., and Hulbert, M.H. (2007) Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochimica et Cosmochimica Acta, 71, 1709–1720.
Darder, M. and Ruiz-Hitzky, E. (2005) Caramel-clay nanocomposites. Journal of Materials Chemistry, 15, 3913–3918.
Davey, M.E. and O’toole, G.A. (2000) Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867.
Difco (1953) Manual of Dehydrated Culture Media and Reagents for Microbiological and Clinical Laboratory Procedures Laboratories. Difco Laboratories, Detroit, USA)
Dorioz, J.M., Robert, M., and Chenu, C.(1993) The role of roots, fungi and bacteria on clay particle organization. An experimental approach. Geoderma, 56, 179–194.
Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438.
Fortin, D. and Beveridge, T.J. (1997) Microbial sulfate reduction within sulfidic mine tailings: formation of diagenetic Fe-sulfides. Geomicrobiology Journal, 14, 1–21.
Fortin, D., Ferris, F.G., and Beveridge, T.J. (1997) Surface-mediated mineral development by bacteria. Pp. 161–180 in: Geomicrobiology: Interactions Between Microbes and Minerals (J.F. Banfield and K.H. Nealson, editors). Reviews in Mineralogy, 35, Mineralogical Society of America, Washington, D.C.
Gerbersdorf, S.U., Jancke, T., Westrich, B., and Paterson, D.M. (2008) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6, 57–69.
Griffin, D., Garrison, V., Herman, J., and Shinn, E. (2001) African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia, 17, 203–213.
Griffin, D.W., Kellogg, C.A., Garrison, V.H., Lisle, J.T., Borden, T.C., and Shinn, E.A. (2003) Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143–157.
Hedges, J.I. and Oades, J.M. (1997) Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry, 27, 319–361.
Jackson, G.A. and Burd, A.B. (1998) Aggregation in the marine environment. Environmental Science and Technology, 32, 2805–2814.
Konhauser, K.O., Schultze-Lam, S., Ferris, F.G., Fyfe, W.S., Longstaffe, F.J., and Beveridge, T.J. (1994) Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Applied and Environmental Microbiology, 60, 549–553.
Kostka, J.E., Wu, J., Nealson, K.H., and Stucki, J.W. (1999) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 63, 3705–3713.
Kostka, J.E., Dalton, D.D., Skelton, H., Dollhopf, S., and Stucki, J.W. (2002) Growth of Iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Applied and Environmental Microbiology, 68, 6256–6262.
Lee, A.K. and Newman, D.K. (2003) Microbial iron respiration: impacts on corrosion processes. Applied Microbiology and Biotechnology, 62, 134–139.
Little, B.J., Wagner, P.A., and Mansfeld, F. (1991) Microbiologically influenced corrosion of metals and alloys. International Materials Reviews, 36, 253–272.
Little, B.J., Wagner, P.A., and Lewandowski, Z. (1997) Spatial relationships between bacteria and mineral surfaces. Pp. 123–155 in: Geomicrobiology — Interactions Between Microbes and Minerals (J.F. Banfield and K.H. Nealson, editors). Reviews in Mineralogy, 35, Mineralogical Society of America, Washington D.C.
McCarthy, M. (2001) Dust clouds implicated in spread of infection. The Lancet, 358, 478.
Mikutta, R., Kleber, M., Kaiser, K., and Jahn, R. (2005) Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Science Society of America Journal, 69, 120–135.
Moore, D. and Reynolds, R.C., Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York.
O’Toole, G.A. and Kolter, R. (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304.
Pina, R.G. and Cervantes, C. (1996) Microbial interactions with aluminium. Biometals, 9, 311–316.
Pope, D., Duquette, D., Wayner, P.C., and Johannes, A.H. (1984) Microbiologically Influenced Corrosion: A State of the Art Review. Columbus, OH, Materials Technology Institute of Chemical Process Industries.
Ransom, B., Kim, D., Kastner, M., and Wainwright, S. (1998) Organic matter preservation on continental slopes: importance of mineralogy and surface area. Geochimica et Cosmochimica Acta, 62, 1329–1345.
Ransom, B., Bennett, R.H., Baerwald, R., Hulbert, M.H., and Burkett, P.-J. (1999) In situ conditions and interactions between microbes and minerals in fine-grained marine sediments; a TEM microfabric perspective. American Mineralogist, 84, 183–192.
Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macintyre, I.G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F., and Desmarais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–992.
Roberts, J.A. (2004) Inhibition and enhancement of microbial surface colonization: the role of silicate composition. Chemical Geology, 212, 313–327.
Ruiz-Conde, A., Ruiz-Amil, A., Perez-Rodriguez, J.L., Sanchez-Soto, P.J., and De La Cruz, F.A. (1997) Interaction of vermiculite with aliphatic amides (formamide, acetamide and propionamide): formation and study of interstratified phases in the transformation of Mg- to NH4-vermiculite. Clays and Clay Minerals, 45, 311–326.
Scappini, F., Casadei, F., Zamboni, R., Franchi, M., Gallori, E., and Monti, S. (2004) Protective effect of clay minerals on adsorbed nucleic acid against UV radiation: possible role in the origin of life. International Journal of Astrobiology, 3, 17–19.
Stal, L.J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiology Journal, 20, 463–478.
Stucki, J.W. and Kostka, J.E. (2006) Microbial reduction of iron in smectite. Comptes Rendus Geosciences, 338, 468–475.
Stucki, J.W., Komadel, P., and Wilkinson, H.T. (1987) Microbial reduction of structural iron(III) in smectites. Soil Science Society of America Journal, 51, 1663–1665.
Stucki, J.W., Jun, W., Gan, H., Komadel, P., and Banin, A. (2000) Effects of iron oxidation state and organic cations on dioctahedral smectite hydration. Clays and Clay Minerals, 48, 290–298.
Sutherland, T.F., Amos, C.L., and Grant, J. (1998) The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary. Limnology and Oceanography, 43, 225–235.
Taylor, D.A. (2002) DUST in the WIND. Environmental Health Perspectives, 110, A80–87.
Ueshima, M. and Tazaki, K. (2001) Possible role of microbial polysaccharides in nontronite formation. Clays and Clay Minerals, 49, 292–299.
Vieira, M.J., Pacheco, A.P., Pinho, I.A., and Melo, L.F. (2001) The effect of clay particles on the activity of suspended autotrophic nitrifying bacteria and on the performance of an air-lift reactor. Environmental Technology, 22, 123–135.
Zhang, S.-Y., Wang, J.-S., Jiang, Z.-C., and Chen, M.-X. (2000) Nitrite accumulation in an Attapulgas clay biofilm reactor by fulvic acids. Bioresource Technology, 73, 91–93.
