Backscattered electron imaging of micro- and nanostructures: 5. SEM signal formation model

Yu. A. Novikov1,2
1A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia

Tóm tắt

A semiempirical model describing how images are formed in a scanning electron microscope operating in the backscattered electron collection mode is discussed. The model involves four imaging mechanisms. The model and the experiment are compared for grooves in silicon with rectangular and trapezoidal relief profiles.

Tài liệu tham khảo

J. Goldstein, D. Newbury, P. Echlin, et al., Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1981). L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, New York, 1998). International Technology Roadmap for Semiconductors (Metrology, 2013). H. M. Marchman, J. E. Griffith, J. Z. Y. Guo, J. Frackoviak, and G. K. Celler, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 12 (6), 3585 (1994). Yu. A. Novikov and A. V. Rakov, Russian Microelectronics 25 (6), 368 (1996). Yu. A. Novikov and A. V. Rakov, Measurement Techniques, 42 (1). 20 (1999). M. T. Postek and A.E. Vladar, “Critical dimension metrology and the scanning electron microscope,” in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold, (Marcel Dekker, New York–Basel, 2001), p. 295. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Russian Microelectronics 31 (4), 207 (2002). Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 704208–1 (2008). doi 10.1117/12.794834 V. P. Gavrilenko, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Sci. Technol. 20, 20–1 (2009). doi 10.1088/0957-0233/20/8/084022 C. G. Frase, W. Hassler-Grohne, G. Dai, H. Bosse, Yu. A. Novikov, and A. V. Rakov, Meas. Sci. Technol. 18, 439 (2007). doi 10.1088/0957-0233/18/2/S16 Yu. A. Novikov and I. Yu. Stekolin, Problems of linear measurements of microobjects in nanometer and submicron ranges. Moscow: Nauka, 1995, P. 41–65. (Proc. IOFAN, Vol. 49), [in Russian]. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, and A. V. Rakov, Russian Microelectronics 33 (6), 342 (2004). V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and Ch. P. Volk, Proc. SPIE 7272, 72720Z–1 (2009). doi 10.1117/12.813514 V. P. Gavrilenko, E. N. Lesnovsky, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and M. N. Filippov, Bull. Russ. Acad. Sci.: Phys. 73 (4), 433 (2009). V. P. Gavrilenko, M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7378, 737812–1 (2009). doi 10.1117/12.813514 V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227–1 (2009). doi 10.1117/12.814062 M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Measurement Techniques 51 (8), 839 (2008). Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Bul. Rus. Acad. Sci., Physics 62 (3), 439 (1998). M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7521, 752116–1 (2010). doi 10.1117/12.854696 Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 6260, 626015–1 (2006). doi 10.1117/12.683401 Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Mechanisms of secondary electron emission from a relief surface of solids. Moscow: Nauka. Fizmatlit, 1998, P. 100–108. (Proc. IOFAN, Vol. 55). [in Russian]. Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 1, 91 (1998) [in Russian]. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (5), 917 (2011). Yu. A. Novikov, S. V. Peshekhonov, and I. B. Strizhkov, Problems of linear measurements of microobjects in nanometer and submicron ranges. Moscow: Nauka, 1995, P. 20–40. (Proc. IOFAN, Vol. 49). [in Russian]. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (4), 775 (2014). doi 10.7868/S0207352814080101 Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (3), 78 (2015). doi 10.1134/S102745101503009X Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (5), 1060 (2015). doi 10.1134/S1027451015050389 Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (1), 221 (2016). doi 10.1134/S1027451016010286 Yu. A. Novikov, Russian Microelectronics 43 (5), 361 (2014). doi 10.1134/S1063739714050047 Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, Linear measurements in micrometer and nanometer ranges for microelectronics and nanotechnology. Moscow: Nauka, 2006, P. 77–120. (Proc. IOFAN, Vol. 62). [in Russian]. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420C–1 (2008). doi 10.1117/12.794891 Yu. A. Novikov and A. V. Rakov, Mechanisms of secondary electron emission from a relief surface of solids. Moscow: Nauka. Fizmatlit, 1998, P. 3–99. (Proc. IOFAN, Vol. 55). [in Russian]. K. A. Valiev, Physics of Submicron Lithography (Plenum Press, New York, 1992). I. Brodie and J. J. Murray, The Physics of Microfabrication (Plenum, New York, 1982). R. W. Nosker, J. Appl. Phys. 40, 1872 (1969). P. A. Todua, V. P. Gavrilenko, Yu. A. Novikov, and A. V. Rakov, Proc. SPIE 7042, 704209–1 (2008). doi 10.1117/12.794926