Tách pha và giảm năng lượng dải cấm do sự ảnh hưởng của bari trong pin mặt trời perovskite vô cơ dạng halide hỗn hợp
Tóm tắt
Các vật liệu perovskite halide vô cơ toàn phần đang cho thấy sự phát triển đầy hứa hẹn đối với các vật liệu và pin mặt trời có hiệu suất cao và ổn định trong thời gian dài. Việc pha tạp nguyên tố, đặc biệt là tại vị trí của chì, đã được chứng minh là một chiến lược hữu ích để đạt được chất lượng màng mong muốn và pha vật liệu cho các pin mặt trời perovskite vô cơ hiệu suất cao và ổn định. Tại đây, chúng tôi chứng minh một chức năng thông qua việc thêm bari vào CsPbI2Br. Chúng tôi nhận thấy rằng bari không bị tích hợp vào mạng tinh thể perovskite mà gây ra hiện tượng tách pha, dẫn đến sự thay đổi tỷ lệ iodide/bromide so với tỷ lệ hóa học trong tiền chất và do đó làm giảm năng lượng dải cấm của pha perovskite. Thiết bị với 20 mol% bari cho thấy hiệu suất chuyển đổi năng lượng cao đạt 14,0% và cải thiện đáng kể sự ức chế tái hợp không bức xạ trong perovskite vô cơ, đạt hiệu điện thế không tải cao là 1,33 V và hiệu suất lượng tử ngoại mức điện phát sáng là 10−4.
Từ khóa
#Perovskite #tách pha #giảm năng lượng dải cấm #bari #pin mặt trờiTài liệu tham khảo
Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).
Laboratory, N. R. E. Best Research-Cell Efficiencies https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190703.pdf (2019).
Berhe, T. A. et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016).
Yang, S. et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).
Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).
Liang, J., Liu, J. & Jin, Z. All-inorganic halide perovskites for optoelectronics: progress and prospects. Sol. RRL 1, 1700086 (2017).
Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).
Sutton, R. J. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).
Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, 307 (2016).
Xiang, W. et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2019).
Zhou, Y. & Zhao, Y. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019).
Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).
Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).
Ju, M. G., Dai, J., Ma, L. & Zeng, X. C. Lead-free mixed tin and germanium perovskites for photovoltaic application. J. Am. Chem. Soc. 139, 8038–8043 (2017).
Shi, Z. et al. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29, 1605005 (2017).
Mir, W. J., Jagadeeswararao, M., Das, S. & Nag, A. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets. ACS Energy Lett. 2, 537–543 (2017).
Lau, C. F. J. et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2, 2319–2325 (2017).
Bai, D. et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 3, 970–978 (2018).
Klug, M. T. et al. Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10, 236–246 (2017).
Kubicki, D. J. et al. Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from 133Cs and 1H NMR relaxation enhancement. J. Mater. Chem. A 7, 2326–2333 (2019).
Bi, D. Q. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 5 (2016).
Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 3, 6 (2015).
Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).
Kubicki, D. J. et al. Cation dynamics in mixed-cation (MA)x(FA)1-xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 10055–10061 (2017).
Kubicki, D. J. et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1-xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 14173–14180 (2017).
Kubicki, D. J. et al. Phase segregation in potassium-doped lead halide perovskites from 39K solid-state NMR at 21.1 T. J. Am. Chem. Soc. 140, 7232–7238 (2018).
Prochowicz, D. et al. One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells. Nano Energy 49, 523–528 (2018).
Dec, S. F. et al. Solid-state multinuclear NMR-studies of ferroelectric, piezoelectric, piezoelectric, and related materials. Inorg. Chem. 32, 955–959 (1993).
Hamaed, H., Ye, E., Udachin, K. & Schurko, R. W. Solid-state 137Ba NMR spectroscopy: an experimental and theoretical investigation of 137Ba electric field gradient tensors and their relation to structure and symmetry. J. Phys. Chem. B 114, 6014–6022 (2010).
Kubicki, D. J. et al. Formation of stable mixed guanidinium-methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140, 3345–3351 (2018).
Hume-Rothery, W. & Powell, H. M. On the theory of super-lattice structures in alloys. Z. Krist. 91, 23–47 (1935).
Luo, D. Y. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).
Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).
Hayashi, S. & Hayamizu, K. Accurate determination of NMR chemical-shifts in alkali-halides and their correlation with structural factors. Bull. Chem. Soc. Jpn. 63, 913–919 (1990).
Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).