BPS states in the Ω-background and torus knots

Journal of High Energy Physics - Tập 2014 - Trang 1-29 - 2014
K. Bulycheva1, A. Gorsky1,2
1Institute of Theoretical and Experimental Physics, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Tóm tắt

We clarify some issues concerning the central charges saturated by the extended objects in the SUSY U(1) 4d gauge theory in the Ω-background. The configuration involving the monopole localized at the domain wall is considered in some details. At the rational ratio $ \frac{{{\in_1}}}{{{\in_2}}}=\frac{p}{q} $ the trajectory of the monopole provides the torus (p,q) knot in the squashed three-sphere. Using the relation between the integrable systems of Calogero type at the rational couplings and the torus knots we interpret this configuration in terms of the auxiliary 2d quiver theory or 3d theory with nontrivial boundary conditions. This realization can be considered as the AGT-like representation of the torus knot invariants.

Tài liệu tham khảo

K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in Ω background and integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE]. K. Ito, S. Kamoshita and S. Sasaki, BPS monopole equation in Ω-background, JHEP 04 (2011) 023 [arXiv:1103.2589] [INSPIRE]. S. Hellerman, D. Orlando and S. Reffert, BPS states in the duality web of the Ω deformation, JHEP 06 (2013) 047 [arXiv:1210.7805] [INSPIRE]. S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE]. N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE]. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE]. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE]. E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE]. D. Gaiotto and E. Witten, Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys. 16 (2012) 935 [arXiv:1106.4789] [INSPIRE]. A. Brini, B. Eynard and M. Mariño, Torus knots and mirror symmetry, Annales Henri Poincaré 13 (2012) 1873 [arXiv:1105.2012] [INSPIRE]. M. Aganagic and S. Shakirov, Knot homology from refined Chern-Simons theory, arXiv:1105.5117 [INSPIRE]. P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov and A. Smirnov, Superpolynomials for toric knots from evolution induced by cut-and-join operators, JHEP 03 (2013) 021 [arXiv:1106.4305] [INSPIRE]. T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE]. Y. Terashima and M. Yamazaki, Semiclassical analysis of the 3d/3d relation, Phys. Rev. D 88 (2013) 026011 [arXiv:1106.3066] [INSPIRE]. E. Gorsky, Arc spaces and DAHA representations, Sel. Math. 19 (2013) 125 [arXiv:1110.1674]. E. Gorsky, A. Oblomkov, J. Rasmussen and V. Shende, Torus knots and the rational DAHA, arXiv:1207.4523 [INSPIRE]. J.L. Cardy, Calogero-Sutherland model and bulk boundary correlations in conformal field theory, Phys. Lett. B 582 (2004) 121 [hep-th/0310291] [INSPIRE]. D. Gaiotto and P. Koroteev, On three dimensional quiver gauge theories and integrability, JHEP 05 (2013) 126 [arXiv:1304.0779] [INSPIRE]. A. Givental and B.-s. Kim, Quantum cohomology of flag manifolds and Toda lattices, Commun. Math. Phys. 168 (1995) 609 [hep-th/9312096] [INSPIRE]. E. Mukhin, V. Tarasov and A. Varchenko, KZ characteristic variety as the zero set of classical Calogero-Moser hamiltonians, SIGMA 8 (2012) 72 [arXiv:1201.3990]. A. Gorsky, A. Zabrodin and A. Zotov, Spectrum of quantum transfer matrices via classical many-body systems, JHEP 01 (2014) 070 [arXiv:1310.6958] [INSPIRE]. I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations, Commun. Math. Phys. 188 (1997) 267 [hep-th/9604080] [INSPIRE]. A. Matsuo, KZ type equations and zonal spherical functions, preprint of RIMS, Kyoto, Japan (1991). I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991) 411. A. Veselov, Calogero quantum problem, Knizhnik-Zamolodchikov equation, and Huygens principle, Theor. Math. Phys. 98 (1994) 368. D. Calaque, B. Enriquez and P. Etingof, Universal KZB equations I: the elliptic case, math/0702670. P. Etingof, E. Gorsky and I. Losev, Representations of rational Cherednik algebras with minimal support and torus knots, arXiv:1304.3412. M.R. Adams, J. Harnad and J. Hurtubise, Dual moment maps into loop algebras, Lett. Math. Phys. 20 (1990) 299. J.P. Harnad, Dual isomonodromic deformations and moment maps to loop algebras, Commun. Math. Phys. 166 (1994) 337 [hep-th/9301076] [INSPIRE]. J.P. Harnad, Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations, hep-th/9406078 [INSPIRE]. E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and (gl N , gl M ) dualities, discrete versus differential, math/0605172. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE]. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE]. M. Shifman and A. Yung, Supersymmetric solitons and how they help us understand non-abelian gauge theories, Rev. Mod. Phys. 79 (2007) 1139 [hep-th/0703267] [INSPIRE]. M. Shifman and A. Yung, Domain walls and flux tubes in N = 2 SQCD: D-brane prototypes, Phys. Rev. D 67 (2003) 125007 [hep-th/0212293] [INSPIRE]. M. Shifman and A. Yung, Localization of nonAbelian gauge fields on domain walls at weak coupling (D-brane prototypes II), Phys. Rev. D 70 (2004) 025013 [hep-th/0312257] [INSPIRE]. A. Gorsky and M.A. Shifman, More on the tensorial central charges in N = 1 supersymmetric gauge theories (BPS wall junctions and strings), Phys. Rev. D 61 (2000) 085001 [hep-th/9909015] [INSPIRE]. N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE]. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE]. N. Nekrasov and E. Witten, The Ω deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE]. N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE]. A. Gorsky and N. Nekrasov, Relativistic Calogero-Moser model as gauged WZW theory, Nucl. Phys. B 436 (1995) 582 [hep-th/9401017] [INSPIRE]. D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE]. D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE]. A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE]. V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE]. A.B. Zamolodchikov and V.A. Fateev, Operator algebra and correlation functions in the two-dimensional SU(2) × SU(2) chiral Wess-Zumino model, Sov. J. Nucl. Phys. 43 (1986) 4. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE]. E. Gorsky and A. Negut, Refined knot invariants and Hilbert schemes, arXiv:1304.3328 [INSPIRE]. T. Dimofte, S. Gukov and L. Hollands, Vortex counting and lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE]. H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].