BACTERIAL HEAVY METAL RESISTANCE: New Surprises

Annual Review of Microbiology - Tập 50 Số 1 - Trang 753-789 - 1996
Simón Silver1, Le T. Phung2
1Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612
2Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637

Tóm tắt

Bacterial plasmids encode resistance systems for toxic metal ions including Ag+, AsO2, AsO43−, Cd2+, Co2+, CrO42−, Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO32−, Tl+, and Zn2+. In addition to understanding of the molecular genetics and environmental roles of these resistances, studies during the last few years have provided surprises and new biochemical mechanisms. Chromosomal determinants of toxic metal resistances are known, and the distinction between plasmid resistances and those from chromosomal genes has blurred, because for some metals (notably mercury and arsenic), the plasmid and chromosomal determinants are basically the same. Other systems, such as copper transport ATPases and metallothionein cation-binding proteins, are only known from chromosomal genes. The largest group of metal resistance systems function by energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The CadA cadmium resistance ATPase of gram-positive bacteria and the CopB copper efflux system of Enterococcus hirae are homologous to P-type ATPases of animals and plants. The CadA ATPase protein has been labeled with 32P from γ-32P-ATP and drives ATP-dependent Cd2+ uptake by inside-out membrane vesicles. Recently isolated genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to the bacterial CadA and CopB ATPases than to eukaryote ATPases that pump different cations. The arsenic resistance efflux system transports arsenite, using alternatively either a two-component (ArsA and ArsB) ATPase or a single polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As (V)] to arsenite [As (III)], the substrate of the efflux system. The three-component Czc (Cd2+, Zn2+, and Co2+) chemiosmotic efflux pump of soil microbes consists of inner membrane (CzcA), outer membrane (CzcC), and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell. Finally, the first bacterial metallothionein (which by definition is a small protein that binds metal cations by means of numerous cysteine thiolates) has been characterized in cyanobacteria.

Từ khóa


Tài liệu tham khảo

Adams A, 1973, Genetics, 74, 197, 10.1093/genetics/74.2.197

Deleted in proof

10.1038/374370a0

10.1111/j.1365-2958.1996.tb02485.x

10.1093/nar/21.10.2515

Barkay T, 1989, Appl. Environ. Microbiol., 55, 1196, 10.1128/aem.55.5.1196-1202.1989

Barkay T, 1989, Appl. Environ. Microbiol., 55, 1574, 10.1128/aem.55.6.1574-1577.1989

10.1021/bi00370a063

10.1074/jbc.270.19.11245

10.1128/jb.175.11.3480-3485.1993

10.1111/j.1365-2958.1995.mmi_17061153.x

Brown NL, Lee BTO, Silver S. 1994. Bacterial transport of and resistance to copper. InMetal Ions in Biological Systems, ed. H Sigel, A Sigel, pp. 405–34, Vol. 30. New York: Dekker

10.1111/j.1365-294X.1995.tb00260.x

10.1016/0378-1097(96)00134-6

10.1016/0168-9525(94)90172-4

10.1093/hmg/4.11.2117

10.1128/jb.177.4.981-986.1995

10.1111/j.1574-6968.1988.tb03172.x

10.1128/jb.172.1.287-291.1990

10.1111/j.1574-6976.1994.tb00145.x

10.1016/0147-619X(92)90007-W

10.1073/pnas.88.20.8915

Cha J-S, 1993, Appl. Environ. Microbiol., 59, 1671, 10.1128/aem.59.5.1671-1674.1993

Chen CM, 1986, J. Biol. Chem., 261, 15030, 10.1016/S0021-9258(18)66824-3

10.1128/jb.174.21.7044-7047.1992

Clark D, 1977, J. Bacteriol., 132, 186, 10.1128/jb.132.1.186-196.1977

10.1021/bi00180a010

10.1111/j.1365-2958.1993.tb01091.x

10.1111/j.1574-6976.1994.tb00112.x

10.1111/j.1574-6968.1993.tb06325.x

10.1021/bi00119a010

10.1021/bi00586a018

Danks DM. 1995. Disorders of copper transport. InThe Metabolic and Molecular Basis of Inherited Disease, ed. CR Scriver, AL Beaudet, WM Sly, D Valle, pp. 2211–35, 7th ed. New York: McGraw-Hill

10.1128/jb.177.2.385-389.1995

10.1007/BF01569896

10.1128/jb.177.8.2050-2056.1995

10.1021/bi00463a013

10.1111/j.1365-2958.1994.tb01278.x

10.1128/jb.177.15.4437-4441.1995

10.1093/nar/23.13.2472

10.1007/BF01570047

10.1007/BF00198367

10.1126/science.7542800

10.1007/BF00250412

10.1016/0147-619X(88)90015-7

10.1021/bi00189a033

10.1146/annurev.micro.50.1.645

10.1111/j.1365-2958.1993.tb01110.x

10.1098/rspb.1992.0072

10.1128/jb.177.15.4207-4215.1995

Haefeli C, 1984, J. Bacteriol., 158, 389, 10.1128/jb.158.1.389-392.1984

10.1128/jb.174.20.6377-6385.1992

10.1126/science.2305262

10.1021/bi00493a011

10.1016/0378-1119(94)90835-4

Hoch JA, Silhavy TJ, eds. 1995. Two-Component Signal Transduction. Washington: ASM Press. 488 pp.

10.1006/plas.1994.1069

10.1111/j.1365-2958.1991.tb01979.x

10.1128/jb.174.15.4878-4884.1992

10.1021/bi00189a034

10.1128/jb.174.11.3684-3694.1992

10.1073/pnas.89.20.9474

10.1007/BF01569887

10.1093/dnares/2.4.153

10.1016/0014-5793(93)80928-N

10.1111/j.1365-2958.1994.tb00430.x

Karkaria CE, 1990, J. Biol. Chem., 265, 7832, 10.1016/S0021-9258(19)39005-2

10.1021/bi00224a009

10.1128/jb.175.2.351-357.1993

10.1007/BF00393375

10.1111/j.1574-6968.1995.tb07540.x

10.1111/j.1365-2958.1995.mmi_17061189.x

10.1271/bbb.60.699

10.1128/jb.172.5.2688-2692.1990

10.1073/pnas.84.15.5106

10.1128/jb.176.10.3040-3048.1994

Lee IW, 1993, J. Biol. Chem., 268, 2632, 10.1016/S0021-9258(18)53821-7

10.1128/jb.176.1.173-188.1994

10.1128/jb.175.3.767-778.1993

10.1021/bi00041a026

Livrelli V, 1993, J. Biol. Chem., 268, 2623, 10.1016/S0021-9258(18)53820-5

10.1111/j.1574-6968.1994.tb06812.x

McClain MS, 1996, Infect. Immun., 64, 1532, 10.1128/iai.64.5.1532-1540.1996

10.1074/jbc.271.1.446

10.1038/ng0494-374

10.1007/BF01569948

10.1021/bi00463a028

10.1021/bi00224a006

Moore MJ, 1989, J. Biol. Chem., 264, 14386, 10.1016/S0021-9258(18)71690-6

10.1021/bi00121a015

10.1021/bi00429a036

10.1111/j.1365-2958.1995.mmi_17010025.x

Mukhopadhyay D, 1991, J. Biol. Chem., 266, 18538, 10.1016/S0021-9258(18)55095-X

Nakahara H, 1979, J. Bacteriol., 140, 161, 10.1128/jb.140.1.161-166.1979

Nakamura K, 1994, Appl. Environ. Microbiol., 60, 4596, 10.1128/aem.60.12.4596-4599.1994

10.1128/jb.177.8.2143-2150.1995

Nies A, 1990, E="2">J. Biol. Chem., 265, 5648, 10.1016/S0021-9258(19)39411-6

10.1128/jb.174.24.8102-8110.1992

10.1128/jb.177.10.2707-2712.1995

10.1073/pnas.86.19.7351

10.1007/BF01569902

10.1006/bbrc.1994.1891

10.1074/jbc.270.9.4349

10.1111/j.1749-6632.1992.tb43836.x

Odermatt A, 1993, J. Biol. Chem., 268, 12775, 10.1016/S0021-9258(18)31455-8

10.1126/science.8342038

10.1128/jb.169.8.3853-3856.1987

Ohtake H, Silver S. 1994. Bacterial reduction of toxic hexavalent chromium. InBiological Degradation and Bioremediation of Toxic Chemicals, ed. GR Chaudhry, pp. 403–15. London: Chapman & Hall

10.1016/S0723-2020(11)80441-8

10.1099/13500872-142-2-337

10.1128/jb.174.7.2160-2171.1992

10.1002/j.1460-2075.1993.tb05673.x

10.1073/pnas.91.20.9651

10.1016/0378-1119(95)00546-4

10.1021/bi00080a019

Deleted in proof

10.1007/BF02110335

10.1111/j.1749-6632.1992.tb43801.x

10.1007/BF00285280

10.1128/jb.174.11.3676-3683.1992

10.1073/pnas.93.8.3182

10.1006/bbrc.1993.2289

10.1093/nar/18.3.619

10.1038/352168a0

10.1038/251335a0

Sedlmeier R, 1993, Mol. Gen. Genet., 236, 76, 10.1007/BF00279645

Sensfuss C, 1986, J. Gen. Microbiol., 132, 997

Selifonova OV, 1994, Appl. Environ. Microbiol., 60, 3503, 10.1128/aem.60.10.3503-3507.1994

10.1021/bi00441a002

Silver S, 1996, Gene.

10.2307/3431771

10.1111/j.1365-2958.1993.tb01607.x

10.1111/j.1365-2958.1993.tb00898.x

Silver S, 1992, Microbiol. Rev., 56, 195, 10.1128/mr.56.1.195-228.1992

10.1007/978-3-642-79162-8_19

10.1128/jb.173.16.5234-5238.1991

10.1093/nar/22.13.2576

10.1074/jbc.270.16.9217

10.1016/0014-5793(94)00316-5

10.1128/jb.174.10.3097-3101.1992

10.1128/AAC.37.4.825

10.1099/13500872-141-2-323

Tisa LS, 1989, J. Biol. Chem., 265, 190, 10.1016/S0021-9258(19)40214-7

10.1006/abbi.1993.1421

10.1128/jb.174.1.116-121.1992

10.1007/BF01569893

10.1007/BF01569937

10.1099/00221287-140-6-1319

10.1139/m95-012

Deleted in proof

10.1126/science.7716541

10.1016/0076-6879(93)26006-U

10.1038/ng0193-7

10.1016/0147-619X(92)90006-V

10.1021/ja00214a047

10.1128/jb.171.1.83-92.1989

10.1128/jb.177.17.5016-5027.1995

10.1038/ng0894-541

10.1111/j.1365-2958.1991.tb00779.x

10.1111/j.1365-2958.1993.tb01605.x

Wu J, 1992, J. Biol. Chem., 267, 12570, 10.1016/S0021-9258(18)42315-0

10.1128/jb.173.23.7643-7649.1991

10.1128/jb.173.23.7636-7642.1991

Yu H, 1994, J. Biol. Chem., 269, 15697, 10.1016/S0021-9258(17)40737-X