Axonal transport in neurological disease

Annals of Neurology - Tập 23 Số 1 - Trang 3-13 - 1988
John W. Griffin1, Danny F. Watson2
1Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205.
2Johns Hopkins University School of Medicine, Department of Neurology, Neuromuscular Division, Baltimore, MD

Tóm tắt

AbstractThe axonal transport systems have a wide variety of primary roles and secondary responses in neurological disease processes. Recent advances in understanding these roles have built on the increasingly detailed insights into the cell biology of the axon and its supporting cells. Fast transport is a microtubule‐based system of bidirectional movement of membranous organelles; the mechanism of translocation of these organelles involves novel proteins, including the recently described protein of fast anterograde transport, kinesin. Slow transport conveys the major cytoskeletal elements, microtubules, and neurofilaments. Several types of structural changes in diseased nerve fibers are understood in terms of underlying transport abnormalities. Altered slow transport of neurofilaments produces changes in axonal caliber (swelling or atrophy) and is involved in some types of perikaryal neurofibrillary abnormality. Secondary changes in slow axonal transport—for example, the reordered synthesis and delivery of cytoskeletal proteins after axotomy—also can produce changes in axonal caliber. Secondary demyelination can be a prominent late consequence of a sustained alteration of neurofilament transport. Impaired fast transport is found in experimental models of distal axonal degeneration (dying back). Retrograde axonal transport provides access to the central nervous system for agents such as polio virus and tetanus toxin, as well as access for known and hypothetical trophic factors. Correlative studies of axonal transport, axonal morphometry, cytoskeletal ultrastructure, and molecular biology of cytoskeletal proteins are providing extremely detailed reconstructions of the pathogenesis of experimental models of neurological disorders. A major challenge lies in the extension of these approaches to clinical studies.

Từ khóa


Tài liệu tham khảo

10.1097/00005072-198309000-00007

10.1007/BF00686905

10.1016/0022-510X(83)90065-5

10.1111/j.1471-4159.1977.tb09624.x

10.1523/JNEUROSCI.04-03-00722.1984

Brimijoin S, 1984, Peripheral Neuropathy, 477

10.1212/WNL.18.9.841

Cavanagh JB, 1964, The significance of the “dying back” process in human and experimental neurological diseases, Int Rev Exp Pathol, 3, 219

10.1111/j.1365-2990.1982.tb00254.x

10.1111/j.1365-2990.1981.tb00103.x

10.1007/BF00688453

10.1007/BF00691211

10.1016/0006-8993(81)90716-2

10.1097/00005072-198001000-00004

Cork LC, 1982, Pathology of motor neurons in accelerated hereditary canine spinal muscular atrophy, Lab Invest, 46, 89

10.1016/0014-4886(84)90003-7

10.1002/mus.880060903

Dyck PJ, 1984, Peripheral Neuropathy, 1557

Dyck PJ, 1984, Peripheral Neuropathy, 666

10.1007/BF01159382

Friede RL, 1971, Changes in microtubules and neurofilaments in constricted, hypoplastic nerve fibers, Acta Neuropathol (suppl V), 5, 216

10.1002/ar.1091670402

10.1083/jcb.74.2.524

Gold BG, 1986, 16th Rochester International Conference on Environmental Toxicology, 119

Gold BG, 1985, Slow axonal transport in acrylamide neuropathy: different abnormalities produced by singledose and continuous administration, J Neurosci, 5, 1755, 10.1523/JNEUROSCI.05-07-01755.1985

Griffin JW, 1984, 3,4‐dimethyl‐2,5‐hexanedione impairs the axonal transport of neurofilament proteins, J Neurosci, 4, 1516, 10.1523/JNEUROSCI.04-06-01516.1984

Griffin J, 1982, Experimental neurotoxic disorders of motor neurons: neurofibrillary pathology, Adv Neurol, 36, 389

10.1002/ana.410140109

Griffin JW, 1983, Microtubule‐neurofilament segregation produced by β,β′ iminodipropionitrile: evidence for the association of fast axonal transport with microtubules, J Neurosci, 3, 557, 10.1523/JNEUROSCI.03-03-00557.1983

10.1126/science.81524

Griffin JW, 1981, Demyelination in experimental IDPN and hexacarbon neuropathies: evidence for an axonal influence, Lab Invest, 45, 130

10.1083/jcb.88.1.205

10.1097/00005072-197705000-00056

10.1016/0006-8993(74)90536-8

10.1083/jcb.94.1.129

10.1073/pnas.84.10.3472

10.1083/jcb.99.2.705

10.1083/jcb.66.2.351

10.1523/JNEUROSCI.03-08-01694.1983

10.1111/j.1471-4159.1983.tb11303.x

10.1097/00005072-198003000-00004

10.1083/jcb.100.1.245

10.1007/BF02834283

10.1016/0022-510X(85)90045-0

10.1007/BF00684740

Lasek RJ, 1976, Cell Motility, Book C, 1021

10.1056/NEJM198001103020202

McLeod D, 1976, Retinal ischaemia, disk swelling, and axoplasmic transport, Trans Ophthalmol Soc UK, 96, 313

Medori R, 1985, Experimental diabetic neuropathy. Impairment of slow transport with changes in axon cross‐sectional area, Proc Natl Acad Sci USA, 82, 7716, 10.1073/pnas.82.22.7716

10.1097/00005072-198505000-00124

10.1016/0041-008X(83)90124-2

10.1073/pnas.82.3.920

Ochoa J, 1980, Management of Peripheral Nerve Problems, 487

Ochs S, 1982, Axoplasmic transport and its relation to other nerve functions

10.1083/jcb.95.2.672

Parhad IM, 1987, The effect of changes in neurofilament content on caliber in small axons: the β,β′‐iminodipropionitrile (IDPN) model, J Neurosci, 7, 2256, 10.1523/JNEUROSCI.07-07-02256.1987

Parhad IM, 1982, Intoxication with β,β′‐iminodipropionitrile. A model of optic disc swelling, Lab Invest, 46, 186

10.1093/brain/33.4.389

10.1002/mus.880050215

10.1126/science.49080

10.1097/00005072-197607000-00006

10.1001/archopht.1979.01020010269018

10.1016/0006-8993(81)90302-4

10.1097/00005072-197404000-00006

10.1083/jcb.94.3.667

10.1016/0092-8674(85)90160-6

10.1083/jcb.82.3.798

Seppalainen AM, 1980, Experimental and Clinical Neurotoxicology, 356

10.1002/ana.410050602

10.3109/10408448009037489

10.1097/00005072-197703000-00005

10.1083/jcb.87.1.197

10.1016/0006-8993(85)91369-1

10.1097/00005072-197905000-00008

10.1001/archopht.1977.04450080158022

10.1083/jcb.84.3.513

10.1016/0306-4522(82)90125-7

10.1016/S0092-8674(85)80099-4

10.1016/0092-8674(85)90234-X

10.1136/bmj.s2-4.43.609

10.1097/00005072-198701000-00009

10.1002/jez.1401070302

10.1523/JNEUROSCI.03-02-00243.1983

10.1016/0006-8993(83)90807-7