Awakening the endogenous Leloir pathway for efficient galactose utilization by Yarrowia lipolytica
Tóm tắt
Production of valuable metabolites by Yarrowia lipolytica using renewable raw materials is of major interest for sustainable food and energy. Galactose is a monosaccharide found in galactomannans, hemicelluloses, gums, and pectins.
Yarrowia lipolytica was found to express all the Leloir pathway genes for galactose utilization, which encode fully functional proteins. Gene organization and regulation in Y. lipolytica resembles filamentous fungi rather than Saccharomyces cerevisiae. After Y. lipolytica was grown on mixture of glucose and galactose, it was then able to metabolize galactose, including when glucose concentrations were higher than 4 g/L. However, glucose was still the preferred carbon source. Nonetheless, a strain overexpressing the four ylGAL genes of the Leloir pathway was able to efficiently use galactose as its sole carbon source. This mutant was used to produce citric acid and lipids from galactose; the yields were comparable to or greater than that obtained for the parental strain (W29) on glucose. The construction of a Y. lipolytica strain able to produce citric acid and lipids from galactose is a very important step in bypassing issues related to the use of food-based substrates in industrial applications.
Tài liệu tham khảo
Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud JM. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol. 2012;93(4):1523–37.
Lazar Z, Dulermo T, Neuvéglise C, Crutz-Le Coq AM, Nicaud JM. Hexokinase—a limiting factor in lipid production from fructose in Yarrowia lipolytica. Met Eng. 2014;26:89–99.
Mirończuk AM, Furgała J, Rakicka M, Rymowicz W. Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J Ind Microbiol Biotechnol. 2014;41(1):57–64.
Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Comm. 2014;5:3131.
Christensen U, Gruben BS, Madrid S, Mulder H, Nikolaev I, de Vries RP. Unique regulatory mechanism for d-galactose utilization in Aspergillus nidulans. Appl Environ Microbiol. 2011;77(19):7084–7.
Wong TY, Yao XT. The DeLey-Doudoroff pathway of galactose metabolism in Azotobacter vinelandii. Appl Environ Microbiol. 1994;60(6):2065–8.
Mojzita D, Herold S, Metz B, Seiboth B, Richard P. l-Xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for d-galactose catabolism in filamentous fungi. J Biol Chem. 2012;287(31):26010–8.
Meyer J, Walker-Jonah A, Hollenberg CP. Galactokinase encoded by GAL1 is a bifunctional protein required for the induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype of Saccharomyces cerevisiae. Mol Cell Biol. 1991;11:5454–61.
Sellick CA, Campbell RN, Reece RJ. Galactose metabolism in yeast-structure and regulation of the Leloir pathway enzymes and the genes encoding them. Int Rev Cell Mol Biol. 2008;269:111–50.
Slot JC, Rokas A. Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. PNAS. 2010;107(22):10136–41.
Bouffard GG, Rudd KE, Adhya SL. Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J Mol Biol. 1994;162:156–9.
Zaman S, Lippman SI, Zhao X, Broach JR. How Saccharomyces responds to nutrients. Annu Rev Genet. 2008;42:27–81.
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62(2):334–61.
Horak J, Wolf DH. Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol. 1997;179:1541–9.
Cardinali G, Vollenbroich V, Jeon MS, de Graaf AA, Hollenberg CP. Constitutive expression in gal7 mutants of Kluyveromyces lactis is due to the internal production of galactose as an inducer of the Gal/Lac regulon. Mol Cell Biol. 1997;17(3):1722–30.
Hartl L, Kubicek CP, Seiboth B. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J Biol Chem. 2007;282(25):18654–9.
Seiboth B, Hofmann G, Kubicek CP. Lactose metabolism and cellulase production in Hypocrea jecorina: the gal7 gene, encoding galactose-1-phosphate uridylyl-transferase, is essential for growth on galactose but not for cellulase induction. Mol Genet Genomics. 2002;267:124–32.
Seiboth B, Karaffa L, Sandor E, Kubicek C. The Hypocrea jecorina gal10 (uridine 5′-diphosphate-glucose 4-epimerase) encoding gene differs from yeast homologues in structure, genomic organization and expression. Gene. 2002;295:143–9.
Seiboth B, Harti L, Pali M, Fekete E, Karaffa L, Kubicek C. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d-galactose. Mol Microbiol. 2004;51(4):1015–25.
Fekete E, de Vries RP, Seiboth B, vanKuyk PA, Sándor E, Fekete E, Metz B, Kubicek CP, Karaffa L. d-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger. FEMS Microbiol Lett. 2012;329(2):198–203.
Alam K, Kaminskyj GW. Aspergillus galactose metabolism is more complex than that of Saccharomyces: the story of GalDGAL7 and GALEGAL1. Botany. 2013;91:467–77.
Michely S, Gaillardin C, Nicaud JM, Neuvéglise C. Comparative physiology of oleaginous species from the Yarrowia clade. PLoS one. 2013;8(5):e63356 (1–10).
Suzuki S, Matsuzawa T, Nukigi Y, Takegawa K, Tanaka N. Characterization of two different types of UDP-glucose/-galactose 4-epimerase involved in galactosylation in fission yeast. Microbiology. 2010;156:708–18.
Wang ZP, Xu HM, Wang GY, Chi Z, Chi ZM. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta. 2013;1831(4):675–82.
van den Brink J, Akeroyd M, van der Hoeven R, Pronk JT, De Winde JH, Daran-Lapujade P. Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transition. Microbiology. 2009;155:1340–50.
Young E, Poucher A, Comer A, Bailey A, Alper H. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol. 2011;77(10):3311–9.
Qiao K, Abidi SHI, Liu H, Zhang H, Chakraborty S, Watson N, Ajikumar PK, Stephanopoulos G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Met Eng. 2015;29:56–65.
Barth G, Gaillardin C. Yarrowia lipolytica. In: Wolf K, Breunig KD, Barth G, editors. Nonconventional yeasts in biotechnology, vol. 1. Berlin: Springer-Verlag; 1996. p. 313–88.
Gaillardin C, Ribet AM. LEU2 directed expression of β-galactosidase activity and phleomycin resistance in Yarrowia lipolytica. Curr Genet. 1987;11:369–75.
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156:119–22.
Xuan JW, Fournier P, Declerck N, Chasles M, Gaillardin C. Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica. Mol Cell Biol. 1990;10:4795–806.
Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM. Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J Bacteriol. 2001;183:5102–9.
Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
Dear S, Staden R. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 1991;19(14):3907–11.
Dulermo T, Tréton B, Beopoulos A. Kabran Gnankon AP, Haddouche R, Nicaud JM. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Biochim Biophys Acta. 2013;1831(9):1486–95.
Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Meth. 2003;55:727–37.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.