Avoid, attack or do both? Behavioral and physiological adaptations in natural enemies faced with novel hosts

Corinne Vacher1, Sam P. Brown2, Michael Hochberg3
1Equipe Biologie des Populations en Interaction, Institut National de la Recherche Agronomique (UMR1112), 06903, Sophia-Antipolis Cedex, France
2Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
3Laboratoire Génétique et Environnement, Institut des Sciences de l'Evolution (UMR5554), Université Montpellier II, 34095, Montpellier, Cedex 5, France

Tóm tắt

Abstract Background Confronted with well-defended, novel hosts, should an enemy invest in avoidance of these hosts (behavioral adaptation), neutralization of the defensive innovation (physiological adaptation) or both? Although simultaneous investment in both adaptations may first appear to be redundant, several empirical studies have suggested a reinforcement of physiological resistance to host defenses with additional avoidance behaviors. To explain this paradox, we develop a mathematical model describing the joint evolution of behavioral and physiological adaptations on the part of natural enemies to their host defenses. Our specific goals are (i) to derive the conditions that may favor the simultaneous investment in avoidance and physiological resistance and (ii) to study the factors that govern the relative investment in each adaptation mode. Results Our results show that (i) a simultaneous investment may be optimal if the fitness costs of the adaptive traits are accelerating and the probability of encountering defended hosts is low. When (i) holds, we find that (ii) the more that defended hosts are rare and/or spatially aggregated, the more behavioral adaptation is favored. Conclusion Despite their interference, physiological resistance to host defensive innovations and avoidance of these same defenses are two strategies in which it may be optimal for an enemy to invest in simultaneously. The relative allocation to each strategy greatly depends on host spatial structure. We discuss the implications of our findings for the management of invasive plant species and the management of pest resistance to new crop protectants or varieties.

Từ khóa


Tài liệu tham khảo

Chew FS: Coevolution of pierid butterflies and their cruciferous foodplants. II. The distribution of eggs on potential foodplants. Evolution. 1977, 31: 568-579.

Pluthero FG, Threlkeld SFH: Genetic differences in malathion avoidance and resistance in Drosophila. J Econ Entomol. 1981, 74: 736-740.

Pluthero FG, Sing RS, Threlkeld SFH: The behavioural and physiological components of malathion resistance in Drosophila melanogaster. Can J Genet Cytol. 1982, 24: 807-815.

Lockwood JA, Sparks TC, Story RN: Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behavior. Bull Entomol Soc Am. 1984, 41-51.

Hoy CW, Head GP, Hall FR: Spatial heterogeneity and insect adaptation to toxins. Ann Rev Entomol. 1998, 43: 571-94. 10.1146/annurev.ento.43.1.571.

Ramachandran S, Buntin GD, Tabashnik BE, Raymer PL, Adang MJ, Pulliam DA, Stewart CN: Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on trangenic canola producing a Bacillus thuringiensis toxin. J Econ Entomol. 1998, 91: 1239-1244.

Negus TF, Ross MH: The response of German cockroaches to toxic baits: strin differences and the effects of selection pressure. Entomol Exp Appl. 1997, 82: 247-253. 10.1023/A:1002978101698.

Gould F: Role of behaviour in the evolution of insect adaptation to insecticides and resistant host plants. Bull Entomol Soc Am. 1984, 30: 34-41.

Castillo-Chavez C, Levin SA, Gould F: Physiological and behavioral adaptation to varying environnements: a mathematical model. Evolution. 1988, 42: 986-994.

Rausher MD: The evolution of habitat preference: avoidance and adaptation. Evolution of insect pests: patterns of variation. Edited by: Kim KC, McPheron BA. 1994, 259-283.

Wallace B: Topics in Population Genetics. 1968, New-York: W. W. Norton

Peck SL, Ellner SP: The effect of economic thresholds and life-history parameters on the evolution of pesticide resistance in a regional setting. Am Nat. 1996, 149: 42-63.

Lenormand T, Raymond M: Resistance management: the stable zone strategy. Proc R Soc Lond B Biol Sci. 1998, 265: 1985-1990. 10.1098/rspb.1998.0529.

Peck SL, Gould F, Ellner SP: Spread of resistance in spatially extended regions of trangenic cotton: implications for management of Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol. 1999, 92: 1-16.

Caprio MA: Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. J Econ Entomol. 2001, 94: 698-705.

Vacher C, Bourguet D, Rousset F, Chevillon C, Hochberg ME: Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton. J Evol Biol. 2003, 16: 378-387. 10.1046/j.1420-9101.2003.00553.x.

Cerda H, Wright DJ: Modeling the spatial and temporal location of refugia to manage resistance in Bt transgenic crops. Agric Ecosyst Environ. 2004, 102: 163-174. 10.1016/j.agee.2003.08.004.

Diehl SR, Bush GL: The role of habitat preference in adaptation and speciation. Speciation and its consequences. Edited by: Otte D, Endler JA. 1989, Sunderland, MA: Sinauer, 345-355.

Cunningham JP, West SA: Host selection in phytophageous insects: a new explanation for learning in adults. Oikos. 2001, 95: 537-543. 10.1034/j.1600-0706.2001.950319.x.

Onstad DW, Spencer JL, Guse CA, Levine E, Isard SA: Modeling evolution of behavioral resistance by an insect to crop rotation. Entomol Exp Appl. 2001, 100: 195-201. 10.1023/A:1019289030248.

West SA, Cunningham JP: A general model for host plant selection in phytophagous insects. J Theor Biol. 2002, 214: 499-513. 10.1006/jtbi.2001.2475.

Poitrineau K, Brown SP, Hochberg ME: Defence against multiple enemies. J Evol Biol. 2003, 16: 1319-1327. 10.1046/j.1420-9101.2003.00585.x.

Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG: The population biology of invasive species. Annu Rev Ecol Syst. 2001, 32: 305-332. 10.1146/annurev.ecolsys.32.081501.114037.

Keane RM, Crawley MJ: Exotic plant invasions and the enemy release hypothesis. TREE. 2002, 17: 164-169.

Joshi J, Vrieling K: The enemy release and EICA hypothesis revisited: incorporating fundamental difference between specialist and generalist herbivores. Ecol Lett. 2005, 8: 704-714. 10.1111/j.1461-0248.2005.00769.x.

Mitchell CE, Power AG: Release of invasive plants from fungal and viral pathogens. Nature. 2003, 421: 625-627. 10.1038/nature01317.

Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM: Introduced species and their missing parasites. Nature. 2003, 421: 628-630. 10.1038/nature01346.

Tabashnik B: Computer simulations as a tool for pesticide resistance management. Pesticide Resistance: Strategies and Tactics for Management. 1986, Washington, USA: National Academy Press, 194-206.

Mallet J, Porter P: Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy?. Proc R Soc Lond B Biol Sci. 1992, 250: 165-169.

Alstad DN, Andow DA: Managing the evolution of insect resistance to transgenic plants. Science. 1995, 268: 1894-1896.

Gould F: Sustainability of transgenic insecticidal cultivars. Integrating pest genetics and ecology. Annu Rev Entomol. 1998, 43: 701-26. 10.1146/annurev.ento.43.1.701.

Livingston MJ, Carlson GA, Fackler PL: Managing resistance evolution in two pests to two toxins with refugia. Am J Agric Econ. 2004, 86: 1-13. 10.1111/j.0092-5853.2004.00558.x.

Levin DA: Alkaloid-bearing plants: an ecogeographic perspective. Am Nat. 1976, 110: 261-284. 10.1086/283063.

Coley PD, Barone JA: Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst. 1996, 27: 305-335. 10.1146/annurev.ecolsys.27.1.305.

Gaston KJ: Global patterns in biodiversity. Nature. 2000, 405: 220-227. 10.1038/35012228.

Condit R, Ashtton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbel SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T: Spatial patterns in the distribution of tropical tree species. Science. 2000, 288: 1414-1418. 10.1126/science.288.5470.1414.

Wiens JA: Spatial scaling in ecology. Funct Ecol. 1989, 3: 385-397.

Lima SL, Zollner PA: Towards a behavioral ecology of ecological landscapes. TREE. 1996, 11: 131-135.

Kawata M, Agawa H: Perceptual scales of spatial heterogeneity of periphyton for freshwater snails. Ecol Lett. 1999, 2: 210-214. 10.1046/j.1461-0248.1999.00071.x.

Law R, Dieckmann U: Moment approximations of individual-based models. The geometry of ecological interactions: simplifying spatial complexity. Edited by: Dieckmann U, Law R, Metz JAJ. 2000, Cambridge: Cambridge University Press

Hartl DL, Clark AG: Principles of Population Genetics. 1989, Sunderland, MA: Sinauer Associates, 2

Kawecki TJ: Red queen meets Santa Rosalia: arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am Nat. 1998, 152: 635-651. 10.1086/286195.

Lucas JR: Time constraints and diet choice: different predictions from different constraints. Am Nat. 1985, 126: 680-705. 10.1086/284447.

Crawley MJ, Krebs JR: Foraging theory. Natural enemies: the population biology of predators, parasites and diseases. Edited by: Crawley MJ. 1992, Oxford: Blackwell Scientific Publications, 90-114.

Coustau C, Chevillon C, Ffrench-Constant R: Resistance to xenobiotics and parasites: can we count the cost?. TREE. 2000, 15: 378-383.

Boots M, Haraguchi Y: The evolution of costly resistance in host-parasite systems. Am Nat. 1999, 153: 359-370. 10.1086/303181.

McKenzie JA, Purvis A: Chromosomal localization of fitness modifiers of diazon resistance genotypes of Lucilia cuprina. Heredity. 1984, 53: 625-634.

Groeters FR, Tabashnik BE, Finson N, Johnson MW: Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution. 1994, 48: 197-201.

Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N: An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos Trans R Soc Lond B Biol Sci. 1998, 353: 1707-1711. 10.1098/rstb.1998.0322.

Hochberg ME: Hide or Fight? The competitive evolution of concealment and encapsulation in parasitoid-host associations. Oikos. 1997, 80: 342-352.

Murray JD: Continuous models for interacting populations. Mathematical Biology, second, corrected edition. Edited by: Murray JD. 1993, Berlin/Heidelberg: Springer-Verlag

Wolfram S: Mathematica Version 4.0.1.0. 1999, Champaign, Ill: Wolfram Research