Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system
Tóm tắt
Early and accurate diagnosis of melanoma, the deadliest type of skin cancer, has the potential to reduce morbidity and mortality rate. However, early diagnosis of melanoma is not trivial even for experienced dermatologists, as it needs sampling and laboratory tests which can be extremely complex and subjective. The accuracy of clinical diagnosis of melanoma is also an issue especially in distinguishing between melanoma and mole. To solve these problems, this paper presents an approach that makes non-subjective judgements based on quantitative measures for automatic diagnosis of melanoma. Our approach involves image acquisition, image processing, feature extraction, and classification. 187 images (19 malignant melanoma and 168 benign lesions) were collected in a clinic by a spectroscopic device that combines single-scattered, polarized light spectroscopy with multiple-scattered, un-polarized light spectroscopy. After noise reduction and image normalization, features were extracted based on statistical measurements (i.e. mean, standard deviation, mean absolute deviation, L
1
norm, and L
2
norm) of image pixel intensities to characterize the pattern of melanoma. Finally, these features were fed into certain classifiers to train learning models for classification. We adopted three classifiers – artificial neural network, naïve bayes, and k-nearest neighbour to evaluate our approach separately. The naive bayes classifier achieved the best performance - 89% accuracy, 89% sensitivity and 89% specificity, which was integrated with our approach in a desktop application running on the spectroscopic system for diagnosis of melanoma. Our work has two strengths. (1) We have used single scattered polarized light spectroscopy and multiple scattered unpolarized light spectroscopy to decipher the multilayered characteristics of human skin. (2) Our approach does not need image segmentation, as we directly probe tiny spots in the lesion skin and the image scans do not involve background skin. The desktop application for automatic diagnosis of melanoma can help dermatologists get a non-subjective second opinion for their diagnosis decision.
Tài liệu tham khảo
Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer statistics. CA Cancer J Clin. 2007, 57: 43-66. 10.3322/canjclin.57.1.43.
Cancer facts and figures. 2013, [http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2013]
Jemal A, Bray F, Center M, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.
Braun R, Rabinovitz H, Oliviero M, Kopf A, Saurat J: Dermoscopy of pigmented lesions. J Am Acad Dermatol. 2005, 52 (1): 109-121. 10.1016/j.jaad.2001.11.001.
Stolz W, Riemann A, Cognetta A: ABCD rule of dermatoscopy: A new practical method for early recognition of malignant melanoma. Eur J Dermatol. 1994, 4: 521-527.
Argenziano G, Fabbrocini G, Carli P, Giorgi V, Sammarco E, Delfino M: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Derm. 1998, 134: 1563-1570.
Menzies SW, Ingvar C, McCarthy WH: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma. Melanoma Res. 1996, 6 (1): 55-62. 10.1097/00008390-199602000-00008.
Geller AC, Swetter SM, Brooks K, Demierre M, Yaroch AL: Screening, early detection, and trends for melanoma: current status (2000–2006) and future directions. J Am Acad Dermatol. 2007, 57: 555-572. 10.1016/j.jaad.2007.06.032.
Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera F, Binder M, Cerroni L, De Rosa G, Ferrara G, Hofmann-Wellenhof R, Landthaler M, Menzies SW, Pehamberger H, Piccolo D, Rabinovitz HS, Schiffner R, Staibano S, Stolz W, Bartenjev I, Blum A, Braun R, Cabo H, Carli P, De Giorgi V, Fleming MG, Grichnik JM, Grin CM, Halpern AC, Johr R, et al: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol. 2003, 48: 679-693. 10.1067/mjd.2003.281.
Manousaki AG, Manios AG, Tsompanaki EI, Panayiotides JG, Tsiftsis DD, Kostaki AK, Tosca AD: A simple digital image processing system to aid in melanoma diagnosis in an everyday melanocytic skin lesion unit: a preliminary report. Int J Dermatol. 2006, 45 (4): 402-410. 10.1111/j.1365-4632.2006.02726.x.
Ganster H, Pinz A, Rohrer R, Wildling E, Binder M, Kittler H: Automated melanoma recognition. IEEE Trans Med Imaging. 2001, 20 (3): 233-239. 10.1109/42.918473.
Alcón JF, Ciuhu C, Kate W, Heinrich A, Uzunbajakava N, Krekels G, Siem D, de Haan G: Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Select Top Sign Process. 2009, 3 (1): 14-25.
Garnavi R, Aldeen M: Computer-aided diagnosis of melanoma using border- and wavelet-based texture analysis. IEEE Trans Inf Technol Biomed. 2012, 16 (6): 1239-1251.
Menzies SW, Bischof L, Talbot H, Gutenev A, Avramidis M, Wong L, Lo SK, Mackellar G, Skladnev V, McCarthy W, Kelly J, Cranney B, Lye P, Rabinovitz H, Oliviero M, Blum A, Varol A, De'Ambrosis B, McCleod R, Koga H, Grin C, Braun R, Johr R: The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma. Arch Dermatol. 2005, 141: 1388-1396.
Hoffmann K, Gambichler T, Rick A: Diagnostic and neural analysis of skin cancer (danaos). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy. Br J Dermatol. 2003, 149: 801-809. 10.1046/j.1365-2133.2003.05547.x.
Jamora MJ, Wainwright BD, Meehan SA, Bystryn JC: Improved identification of potentially dangerous pigmented skin lesions by computerized image analysis. Arch Derm. 2003, 139: 195-198.
Monheit G, Cognetta AB, Ferris L, Rabinovitz H, Gross K, Martini M, Grichnik JM, Mihm M, Prieto VG, Googe P, King R, Toledano A, Kabelev N, Wojton M, Gutkowicz-Krusin D: The performance of MelaFind: a prospective multicenter study. Arch Dermatol. 2011, 147 (2): 188-194. 10.1001/archdermatol.2010.302.
McCance KL, Huether SE, Brashers VL, Rote NS: Pathophysiology: The Biologic Basis for Disease in Adults and Children. 2009, Maryland Heights, Missouri: Mosby Inc., 6
Garcia-Uribe A, Kehtarnavaz N, Marquez G, Prieto V, Duvic M, Wang LV: Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins. Appl Opt. 2004, 43: 2643-2650. 10.1364/AO.43.002643.
Elbaum M, Kopf A, Rabinovitz H, Langley R, Kamino H: Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: A feasibility study. J Am Acad Dermatol. 2001, 44: 207-218. 10.1067/mjd.2001.110395.
Pham T, Spott T, Svaasand L, Tromberg B: Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance. Appl Opt. 2000, 39: 4733-4745. 10.1364/AO.39.004733.
Hielscher A, Liu H, Chance B, Tittel F, Jacques S: Time-resolved photon emission from layered turbid media. Appl Opt. 1996, 35: 719-728. 10.1364/AO.35.000719.
Kienle A, Patterson M, Dognitz N, Bays R, Wagnieres H: Noninvasive determination of the optical properties of two layered turbid media. Appl Opt. 1998, 37: 779-791. 10.1364/AO.37.000779.
Franceschini M, Fantini S, Paunescu L, Maier J, Gratton E: Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media. Appl Opt. 1998, 37: 7447-7458. 10.1364/AO.37.007447.
Martelli F, Bianco S, Zaccanti G, Pifferi A, Torricelli A, Bassi A, Taroni F, Cubeddu R: Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements. Opt. Lett. 2004, 29: 2037-2039. 10.1364/OL.29.002037.
Backman V, Gurjar R, Badizadegan K, Itzkan I, Dasari RR, Perelman LT, Feld MS: Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J Select Top Quant Electron. 1999, 5: 1019-1026. 10.1109/2944.796325.
Mourant JR, Johnson TM, Freyer JP: Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements. Appl Opt. 2001, 40: 5114-5123. 10.1364/AO.40.005114.
Mourant JR, Johnson TM, Carpenter S, Guerra A, Aida T, Freyer JP: Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures. J Biomed Opt. 2002, 7: 378-387. 10.1117/1.1483317.
Jacques S, Roman J, Lee K: Imaging superficial tissues with polarized light. Lasers Surg Med. 2000, 26: 119-129. 10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y.
Morgan S, Ridgway M: Polarization properties of light backscattered from a two layer scattering medium. Opt Express. 2000, 7: 395-402. 10.1364/OE.7.000395.
Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, Dasari RR, Feld MS: Imaging human epithelial properties with polarized light scattering spectroscopy. Nat Med. 2001, 7: 1245-1248. 10.1038/nm1101-1245.
Mark H, Eibe F, Geoffrey H, Bernhard P, Peter R, Ian W: The WEKA Data mining software: an update. SIGKDD Explor Newsl. 2009, 11 (1): 10-18. 10.1145/1656274.1656278.
Wettschereck D, Aha DW, Mohri T: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif Intell Rev. 1997, 10: 1-37. 10.1016/S0933-3657(97)00380-1.
Nimunkar A, Dhawan A, Relue P, Patwardhan S: Wavelet and statistical analysis for melanoma. Proceedings of SPIE Medical Imaging: Image Processing. Edited by: Milan S, Michael Fitzpatrick J. 2002, San Diego, CA: SPIE, 1346-1352. Feb. 23, 2002
Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Puddu P, Perotti R, Nobile F, Andreassi L, Rubegni P: Melanoma computer-aided diagnosis: reliability and feasibility study. Clin Cancer Res. 2004, 10: 1881-1886. 10.1158/1078-0432.CCR-03-0039.
Walvick R, Patel K, Patwardhan S, Dhawan A: Classification of melanoma using wavelet-transform-based optimal feature set. Proceedings of SPIE Medical Imaging: Image Processing. Edited by: Milan S, Michael Fitzpatrick J. 2004, San Diego, CA: SPIE, 944-951. Feb. 14, 2004
Zagrouba E, Barhoumi W: An accelerated system for melanoma diagnosis based on subset feature selection. J Comput Inf Technol. 2005, 1: 69-82.
Li L, Zhang QZ, Ding YH, Jiang HB, Thiers BT, Wang JZ: A Computer-aided spectroscopic system for early diagnosis of melanoma. Proceedings of IEEE 25th International Conference on Tools with Artificial Intelligence. Edited by: Randall B, Zoey V. 2013, Washington, DC: IEEE, 145-150.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2342/14/36/prepub