Automated surgical skill assessment in RMIS training

Aneeq Zia1, Irfan Essa1
1College of Computing, Georgia Institute of Technology, Atlanta, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Martin J, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (osats) for surgical residents. Br J Surg 84(2):273–278

Reiley CE, Hager GD (2009) Decomposition of robotic surgical tasks: an analysis of subtasks and their correlation to skill. In: M2CAI workshop. MICCAI, London

Haro BB, Zappella L, Vidal R (2012) Surgical gesture classification from video data. In: MICCAI 2012. Springer, pp 34–41

DiPietro R, Lea C, Malpani A, Ahmidi N, Vedula SS, Lee GI, Lee MR, Hager GD (2016) Recognizing surgical activities with recurrent neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 551–558

Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Bejar B, Zappella L, Khudanpur S, Vidal R, Hager G (2017) A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Bio Med Eng 64(9):2025–2041

Zia A, Sharma Y, Bettadapura V, Sarin EL, Clements MA, Essa (2015) I Automated assessment of surgical skills using frequency analysis. In: Medical image computing and computer-assisted intervention–MICCAI 2015. Springer, pp 430–438

Zia A, Sharma Y, Bettadapura V, Sarin EL, Ploetz T, Clements MA, Essa I (2016) Automated video-based assessment of surgical skills for training and evaluation in medical schools. Int J Comput Assist Radiol Surg 11(9):1623–1636

Zia A, Sharma Y, Bettadapura V, Sarin EL, Essa I (2017) Video and accelerometer-based motion analysis for automated surgical skills assessment. arXiv preprint arXiv:1702.07772

Sharma Y, Bettadapura V, Plötz T, Hammerla N, Mellor S, McNaney R, Olivier P, Deshmukh S, McCaskie A, Essa I (2014) Video based assessment of $$\text{OSATS}$$ OSATS using sequential motion textures. In: International workshop on modeling and monitoring of computer assisted interventions (M2CAI)-workshop

Tao L, Elhamifar E, Khudanpur S, Hager GD, Vidal R (2012) Sparse hidden markov models for surgical gesture classification and skill evaluation. In: International conference on information processing in computer-assisted interventions. Springer, Berlin Heidelberg, pp 167–177

Laptev I (2005) On space-time interest points. IJCV 64(2–3):107–123

Sharma Y, Bettadapura V, Plötz T, Hammerla N, Mellor S, McNaney R, Olivier P, Deshmukh S, McCaskie A, Essa I (2014) Video based assessment of osats using sequential motion textures. Georgia Institute of Technology, Atlanta

Bettadapura V, Schindler G, Plötz T, Essa I (2013) Augmenting bag-of-words: data-driven discovery of temporal and structural information for activity recognition. In: CVPR, IEEE

Pirsiavash H, Vondrick C, Torralba A (2014) Assessing the quality of actions. In: ECCV. Springer, pp 556–571

Venkataraman V, Vlachos I, Turaga PK (2015) Dynamical regularity for action analysis. In: BMVC. pp 67–1

Nisky I, Che Y, Quek ZF, Weber M, Hsieh MH, Okamura AM (2015) Teleoperated versus open needle driving: Kinematic analysis of experienced surgeons and novice users. In: 2015 IEEE international conference on robotics and automation (ICRA), IEEE pp 5371–5377

Ahmidi N, Gao Y, Béjar B, Vedula SS, Khudanpur S, Vidal R, Hager GD (2013) String motif-based description of tool motion for detecting skill and gestures in robotic surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2013. Springer, pp 26–33

Fard MJ, Ameri S, Chinnam RB, Pandya AK, Klein MD, Ellis RD (2016) Machine learning approach for skill evaluation in robotic-assisted surgery. arXiv preprint arXiv:1611.05136

Ershad M, Koesters Z, Rege R, Majewicz A (2016) Meaningful assessment of surgical expertise: Semantic labeling with data and crowds. In: International conference on medical image computing and computer-assisted intervention. Springer International Publishing, pp 508–515

Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297–2301

Drucker H, Burges CJC, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression machines. In: Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 155–161

Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B, Lin HC, Tao L, Zappella L, Béjar B, Yuh DD, Chen CCG, Vidal R, Khudanpur S, Hager GD (2014) Jhu-isi gesture and skill assessment working set (jigsaws): a surgical activity dataset for human motion modeling. In: MICCAI Workshop: M2CAI, vol 3