Automated quantification of left atrial size using three-beat averaging real-time three dimensional Echocardiography in patients with atrial fibrillation

Cardiovascular Ultrasound - Tập 13 - Trang 1-9 - 2015
Ran Heo1, Geu-Ru Hong1, Young-Jin Kim2, Joel Mancina3, In-Jeong Cho1, Chi Young Shim1, Hyuk-Jae Chang1, Jong-Won Ha1, Namsik Chung1
1Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
2Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
3Ultrasound Division, Siemens Medical Solution, Mountain View, CA, USA

Tóm tắt

Left atrial (LA) sizing in patients with atrial fibrillation (AF) is crucial for follow-up and outcome. Recently, the automated quantification of LA using the novel three-beat averaging real-time three dimensional echocardiography (3BA-RT3DE) is introduced. The aim of this study was to assess the feasibility and accuracy of 3BA-RT3DE in patients with atrial fibrillation (AF). Thirty-one patients with AF (62.8 ± 11.7 years, 67.7 % male) were prospectively recruited to have two dimensional echocardiography (2DE) and 3BA-RT3DE (SC 2000, ACUSON, USA). The maximal left atrial (LA) volume was measured by the conventional prolate-ellipse (PE) and area-length (AL) method using three-beat averaging 2D transthoracic echocardiography and automated software analysis (eSie volume analysis, Siemens Medical Solution, Mountain view, USA); measurements were compared with those obtained by computed tomography (CT). Maximal LA volume by 3BA-RT3DE was feasible for all patients. LA volume was 68.4 ± 28.2 by PE-2DE, 89.2 ± 33.1 by AL-2DE, 100.6 ± 31.8 by 3BA-RT3DE, and 131.2 ± 42.2 mL by CT. LA volume from PE-2DE (R2 = 0.48, p < 0.001, ICC = 0.64, p < 0.001), AL-2DE (R2 = 0.47, p < 0.001, ICC = 0.67, p < 0.001), and 3BA-RT3DE (R2 = 0.50, p = 0.001, ICC = 0.65, p < 0.001) showed significant correlations with CT. However, 3BA-RT3DE demonstrated a small degree of underestimation (30.5 mL) of LA volume compared to 2DE-based measurements. Good-quality images from 3BA-RT3DE (n = 16) showed a significantly tighter correlation with images from CT scanning (R2 = 0.60, p = 0.0004, ICC = 0.76, p < 0.001) compared to those of fair quality. Automated quantification of LA volume using 3BA-RT3DE is feasible and accurate in patients with AF. An image of good quality is essential for maximizing the value of this method in clinical practice.

Tài liệu tham khảo

Vaziri SM, Larson MG, Benjamin EJ, Levy D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation. 1994;89(2):724–30. Sanfilippo AJ, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA, et al. Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation. 1990;82(3):792–7. Osranek M, Bursi F, Bailey KR, Grossardt BR, Brown Jr RD, Kopecky SL, et al. Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone atrial fibrillation: three-decade follow-up. Eur Heart J. 2005;26(23):2556–61. Bollmann A, Husser D, Steinert R, Stridh M, Soernmo L, Olsson SB, et al. Echocardiographic and electrocardiographic predictors for atrial fibrillation recurrence following cardioversion. J Cardiovasc Electrophysiol. 2003;14(10 Suppl):S162–5. Marchese P, Bursi F, Delle Donne G, Malavasi V, Casali E, Barbieri A, et al. Indexed left atrial volume predicts the recurrence of non-valvular atrial fibrillation after successful cardioversion. Eur J Echocardiogr. 2011;12(3):214–21. Jahnke C, Fischer J, Mirelis JG, Kriatselis C, Gerds-Li JH, Gebker R, et al. Cardiovascular magnetic resonance imaging for accurate sizing of the left atrium: predictability of pulmonary vein isolation success in patients with atrial fibrillation. J Magn Reson Imaging. 2011;33(2):455–63. Abecasis J, Dourado R, Ferreira A, Saraiva C, Cavaco D, Santos KR, et al. Left atrial volume calculated by multi-detector computed tomography may predict successful pulmonary vein isolation in catheter ablation of atrial fibrillation. Europace. 2009;11(10):1289–94. Hoit BD. Assessment of echocardiographic left atrial size: how accurate do we need to be? JACC Cardiovasc Imaging. 2012;5(8):778–80. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–71. Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging. 2014;15(6):680–90. Keller AM, Gopal AS, King DL. Left and right atrial volume by freehand three-dimensional echocardiography: in vivo validation using magnetic resonance imaging. Eur J Echocardiogr. 2000;1(1):55–65. Buechel RR, Stephan FP, Sommer G, Bremerich J, Zellweger MJ, Kaufmann BA. Head-to-Head Comparison of Two-Dimensional and Three-Dimensional Echocardiographic Methods for Left Atrial Chamber Quantification with Magnetic Resonance Imaging. J Am Soc Echocardiogr. 2013;26(4):428–35. Mahabadi AA, Samy B, Seneviratne SK, Toepker MH, Bamberg F, Hoffmann U, et al. Quantitative assessment of left atrial volume by electrocardiographic-gated contrast-enhanced multidetector computed tomography. J Cardiovasc Comput Tomogr. 2009;3(2):80–7. Miyasaka Y, Tsujimoto S, Maeba H, Yuasa F, Takehana K, Dote K, et al. Left atrial volume by real-time three-dimensional echocardiography: validation by 64-slice multidetector computed tomography. J Am Soc Echocardiogr. 2011;24(6):680–6. Shimada YJ, Shiota T. Underestimation of left atrial volume by three-dimensional echocardiography validated by magnetic resonance imaging: a meta-analysis and investigation of the source of bias. Echocardiography. 2012;29(4):385–90. Kircher B, Abbott JA, Pau S, Gould RG, Himelman RB, Higgins CB, et al. Left atrial volume determination by biplane two-dimensional echocardiography: validation by cine computed tomography. Am Heart J. 1991;121(3):864–71. Rodevand O, Bjornerheim R, Ljosland M, Maehle J, Smith H, Ihlen H. Left atrial volumes assessed by three-and two-dimensional echocardiography compared to MRI estimates. Int J Cardiac Imaging. 1999;15(5):397–410. Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, et al. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC Cardiovasc Imaging. 2012;5(3):239–51. Tighe DA, Rosetti M, Vinch CS, Chandok D, Muldoon D, Wiggin B, et al. Influence of image quality on the accuracy of real time three-dimensional echocardiography to measure left ventricular volumes in unselected patients: a comparison with gated-SPECT imaging. Echocardiography. 2007;24(10):1073–80. Moon J, Lee HJ, Kim YJ, Shim J, Kim JY, Pak HN, et al. Prognostic implication of atrial pressures in patients with nonvalvular atrial fibrillation and preserved systolic function who undergo radiofrequency catheter ablation: a pilot study. Int J Cardiol. 2013;168(4):4388–90. Moon J, Lee HJ, Shim J, Uhm JS, Kim JY, Pak HN, et al. Distinct prognostic impacts of both atrial volumes on outcomes after radiofrequency ablation of nonvalvular atrial fibrillation: three-dimensional imaging study using multidetector computed tomography. Int J Cardiol. 2013;168(6):5430–6. Jenkins C, Bricknell K, Marwick TH. Use of real-time three-dimensional echocardiography to measure left atrial volume: comparison with other echocardiographic techniques. J Am Soc Echocardiogr. 2005;18(9):991–7. Artang R, Migrino RQ, Harmann L, Bowers M, Woods TD. Left atrial volume measurement with automated border detection by 3-dimensional echocardiography: comparison with Magnetic Resonance Imaging. Cardiovasc Ultrasound. 2009;7:16. Suh IW, Song JM, Lee EY, Kang SH, Kim MJ, Kim JJ, et al. Left atrial volume measured by real-time 3-dimensional echocardiography predicts clinical outcomes in patients with severe left ventricular dysfunction and in sinus rhythm. J Am Soc Echocardiogr. 2008;21(5):439–45. Maddukuri PV, Vieira ML, DeCastro S, Maron MS, Kuvin JT, Patel AR, et al. What is the best approach for the assessment of left atrial size? Comparison of various unidimensional and two-dimensional parameters with three-dimensional echocardiographically determined left atrial volume. J Am Soc Echocardiogr. 2006;19(8):1026–32. Muller H, Burri H, Shah D, Lerch R. Evaluation of left atrial size in patients with atrial arrhythmias: comparison of standard 2D versus real time 3D echocardiography. Echocardiography. 2007;24(9):960–6. Anwar AM, Soliman OI, Geleijnse ML, Nemes A, Vletter WB, ten Cate FJ. Assessment of left atrial volume and function by real-time three-dimensional echocardiography. Int J Cardiol. 2008;123(2):155–61. Caselli S, Canali E, Foschi ML, Santini D, Di Angelantonio E, Pandian NG, et al. Long-term prognostic significance of three-dimensional echocardiographic parameters of the left ventricle and left atrium. Eur J Echocardiogr. 2010;11(3):250–6. Nunes MC, Barbosa MM, Ribeiro AL, Colosimo EA, Rocha MO. Left atrial volume provides independent prognostic value in patients with Chagas cardiomyopathy. J Am Soc Echocardiogr. 2009;22(1):82–8. Soliman OI, Krenning BJ, Geleijnse ML, Nemes A, van Geuns RJ, Baks T, et al. A comparison between QLAB and TomTec full volume reconstruction for real time three-dimensional echocardiographic quantification of left ventricular volumes. Echocardiography. 2007;24(9):967–74. Mor-Avi V, Yodwut C, Jenkins C, Kuhl H, Nesser HJ, Marwick TH, et al. Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC Cardiovasc Imaging. 2012;5(8):769–77. Rohner A, Brinkert M, Kawel N, Buechel RR, Leibundgut G, Grize L, et al. Functional assessment of the left atrium by real-time three-dimensional echocardiography using a novel dedicated analysis tool: initial validation studies in comparison with computed tomography. Eur J Echocardiogr. 2011;12(7):497–505. Agner BF, Kuhl JT, Linde JJ, Kofoed KF, Akeson P, Rasmussen BV, et al. Assessment of left atrial volume and function in patients with permanent atrial fibrillation: comparison of cardiac magnetic resonance imaging, 320-slice multi-detector computed tomography, and transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2014;15(5):532–40. Russo C, Jin Z, Homma S, Rundek T, Elkind MS, Sacco RL, et al. Left atrial minimum volume and reservoir function as correlates of left ventricular diastolic function: impact of left ventricular systolic function. Heart. 2012;98(10):813–20. Appleton CP, Galloway JM, Gonzalez MS, Gaballa M, Basnight MA. Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol. 1993;22(7):1972–82. Fatema K, Barnes ME, Bailey KR, Abhayaratna WP, Cha S, Seward JB, et al. Minimum vs. maximum left atrial volume for prediction of first atrial fibrillation or flutter in an elderly cohort: a prospective study. Eur J Echocardiogr. 2009;10(2):282–6. Haffajee JA, Lee Y, Alsheikh-Ali AA, Kuvin JT, Pandian NG, Patel AR. Pre-operative left atrial mechanical function predicts risk of atrial fibrillation following cardiac surgery. JACC Cardiovasc Imaging. 2011;4(8):833–40.