Autoignition of heptanes; experiments and modeling

International Journal of Chemical Kinetics - Tập 37 Số 12 - Trang 728-736 - 2005
J. M. Smith1, John M. Simmie1, Henry J. Curran1
1Chemistry Department, National University of Ireland, Galway, Ireland

Tóm tắt

AbstractThere is much interest in determining the influence of molecular structure on the rate of combustion of hydrocarbons; the C7H16 isomers of heptane have been selected here as they exemplify all the different structural elements present in aliphatic, noncyclic hydrocarbons.With the exception of n‐heptane itself, no autoignition studies have been carried out to date on the other isomers of heptane at high temperatures. Therefore, ignition delay times were measured for the oxidation of four isomers—n‐heptane, 2,2‐dimethylpentane, 2,3‐dimethylpentane, and 2,2,3‐trimethylbutane—under stoichiometric conditions at a reflected shock pressure of 2 atm, within the temperature range of 1150–1650 K. Measurements under identical conditions reveal that they all have essentially the same ignition delay time; this confirms earlier theoretical predictions based purely on detailed chemical kinetic modeling.The variation of ignition delay times for n‐heptane with changing oxygen concentrations and reflected shock pressure was determined and shown to follow expected trends. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 728–736, 2005

Từ khóa


Tài liệu tham khảo

10.1016/S0360-1285(03)00060-1

Borisov A. A., 2000, Chem Phys Rep, 18, 1665

10.1039/b003665j

Jee S. B., 2000, Bull Korean Chem Soc, 21, 1015

Won S. J., 2000, Bull Korean Chem Soc, 21, 487

10.1002/kin.1046

10.1039/b101803p

10.2514/2.5744

10.1524/zpch.2001.215.8.997

Kim K., 2001, Bull Korean Chem Soc, 22, 303

10.1016/S0010-2180(00)00200-5

10.1016/S0010-2180(01)00225-5

10.1007/PL00004054

10.1016/S0169-5983(02)00036-9

10.1080/713712958

10.2514/2.5942

10.1080/00102200290021335

10.1007/s001930100108

10.1007/s00193-003-0188-z

10.1016/S0010-2180(03)00002-6

10.2514/2.6147

10.1016/S0010-2180(02)00504-7

10.1016/S0010-2180(02)00552-7

10.1023/A:1026186231905

10.1016/j.combustflame.2003.09.002

10.1016/j.combustflame.2003.10.002

10.1002/kin.20024

Lifshitz A., 2001, Handbook Shock Waves

10.1016/S0082-0784(63)80109-5

10.1016/0010-2180(65)90009-X

10.1016/S0010-2180(72)80183-4

10.1016/S0082-0784(79)80061-2

Ciezki H.;Adomeit G.In16th International Symposium on Shock Tubes Waves 1987; pp.481–486.

10.1016/0010-2180(93)90142-P

Davidson D. F.;Horning D. C.;Hanson R. K.;Hitch B.In22nd International Symposium on Shock Waves 1999; paper 360.

Horning D. C.;Davidson D. F.;Hanson R. K.In23rd International Symposium on Shock Waves 2001; paper 5732.

Herzler J.;Jerig L.;Roth P.(in review).

10.2514/1.2436

Ben‐Dor G., 2001, Handbook of Shock Waves, Vol. 1: Theoretical, Experimental and Numerical Techniques, 185

Morley C.http://www.c.morley.ukgateway.net/gseqrite.html.

10.1016/0010-2180(68)90080-1

10.1063/1.1673620

Lide D. R., 1997, Handbook of Chemistry and Physics

10.1002/kin.550180402

10.1007/PL00004051

Burcat A.;Farmer R. C.;Matula R. A.InProceedings of the 13th International Symposium on Shock Tubes and Shock Waves 1981; pp.826–833.

10.1002/kin.10020

Lund C. M.;Chase L.Lawrence Livermore National Laboratory Report; UCRL‐52504 revised1995.

10.1002/kin.20036

10.1016/S0010-2180(97)00282-4

10.1016/S0010-2180(99)00014-0

10.1016/S0082-0784(00)80566-4

10.1016/S0082-0784(96)80102-0

10.1016/S0010-2180(01)00373-X

Benson S. W., 1976, Thermochemical Kinetics

10.1002/kin.550230903

10.1021/j100039a045

10.1016/S0082-0784(06)80094-9