Au Nanoparticle-decorated Nanoporous PEDOT Modified Glassy Carbon Electrode: A New Electrochemical Sensing Platform for the Detection of Glutathione
Tóm tắt
Glutathione (GSH) is an important bio-thiol which is playing vital role in the human system, such as treating glaucoma, preventing asthma, cancer, etc. Therefore, electrochemical sensing of GSH is becoming very vital to know the level of the biomolecule in living systems. Hence, the present work aims to develop a sensor matrix for electrochemical biosensing of GSH at Au nanoparticle decorated Nanoporous poly(3,4)ethylene dioxythiophene (PEDOT) modified glassy carbon electrode (AuNPPEDOT/ GCE). The electrode is modified with a nanoporous fibrillar network of PEDOT containing Au nanoparticles and characterized using UV-Visible spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). The platform is capable of producing enhanced signal against the bio-analyte at the applied overpotential of 0.6 V. Whereas bare glassy carbon electrode is unable to produce the signal. Conversely, Nanoporous PEDOT modified glassy carbon electrode can sense GSH of very low sensitivity at an applied overpotential of 0.7 V. From single step chronoamperometric measurements, kinetic parameters such as diffusion coefficient and apparent rate constant of the reaction were found as 5.01 × 10-5 cm2·s-1 and 1.106 × 103 M-1·s-1 respectively. From the amperometric response, the sensitivity and limit of detection (LOD) of the electrode were to be 10.7μA cm-2/μM and 0.173 μM respectively with the linear range of 0.5 to 10 μM. The matrix can detect GSH in the presence of other possible interfering molecules present in blood samples.
Tài liệu tham khảo
Frasca, D. R. and M. J. Clarke (1999) Alterations in the binding of [Cl(NH3)5RuIII]2+ to DNA by glutathione: reduction, autoxidation, coordination, and decomposition. J. Am. Chem. Soc. 121: 8523–8532.
White, P. C., N. S. Lawrence, J. Davis, and R. G. Compton (2002) Electrochemical determination of thiols: A perspective. Electroanalysis. 14: 89–98
Harfield, J. C., C. Batchelor-McAuley, and R. G. Compton (2012) Electrochemical determination of glutathione: a review. Analyst. 137: 2285–2296.
Miao, P., L. Liu, Y. Nie, and G. Li (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens. Bioelectron. 24: 3347–3351.
Obrador, E., J. Carretero, A. Ortega, I. Medina, V. Rodilla, J. A. Pellicer, and J. M. Estrela (2002) γ-glutamyl transpeptidase overexpression increases metastatic growth of B16 Melanoma cells in the mouse liver. Hepatology. 35: 74–81.
Lee, P. T., D. Lowinsohn, and R. G. Compton (2014) The use of screen-printed electrodes in a proof of concept electrochemical estimation of homocysteine and glutathione in the presence of cysteine using catechol. Sensors. 14: 10395–10411.
Sudeep, P. K., S. T. S. Joseph, and K. G. Thomas (2005) Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127: 6516–6517.
Chen, T. H. and W. L. Tseng (2012) (Lysozyme type VI)-stabilized Au8 clusters: synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small. 8: 1912–1919.
Xu, Y., X. Niu, H. Zhang, L. Xu, S. Zhao, H. Chen, and X. Chen (2015) Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J. Agric. Food. Chem. 63: 1747–1755.
Tian, D., Z. Qian, Y. Xia, and C. Zhu (2012) Gold nanoclusterbased fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir. 28: 3945–3951.
Qin, L., X. He, L. Chen, and Y. Zhang (2015) Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods. ACS Appl. Mater. Interfaces. 7: 5965–5971.
Wang, X., J. Lv, X. Yao, Y. Li, F. Huang, M. Li, J. Yang, X. Ruan, and B. Tang (2014) Screening and investigation of a cyanine fluorescent probe for simultaneous sensing of glutathione and cysteine under single excitation. Chem. Commun. 50: 15439–15442.
Xu, F., L. Wang, M. Gao, L. Jin, and J. Jin (2002) Amperometric determination of glutathione and cysteine on a Pd-IrO2 modified electrode with high performance liquid chromatography in rat brain microdialysate. Anal. Bioanal. Chem. 372: 791–794.
Cereser, C., J. Guichard, J. Drai, E. Bannier, I. Garcia, S. Boget, P. Parvaz, and A. Revol (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J. Chromatogr. B. Biomed Sci. Appl. 752: 123–132.
Zhang, W., F. Wan, W. Zhu, H. Xu, X. Ye, R. Cheng, and L. T. Jin (2005) Determination of glutathione and glutathione disulfide in hepatocytes by liquid chromatography with an electrode modified with functionalized carbon nanotubes. J. Chromatogr. B. 818: 227–232.
Senft, A. P., T. P. Dalton, and H. G. Shertzer (2000) Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal. Biochem. 280: 80–86.
Eremenko, A. V., E. A. Dontsova, A. P. Nazarov, E. G. Evtushenko, S. V. Amitonov, S. V. Savilov, L. F. Martynova, V. V. Lunin, and I. N. Kurochkin (2012) Manganese dioxide nanostructures as a novel electrochemical mediator for thiol sensors. Electroanalysis. 24: 573–580.
Safavi, A., N. Maleki, E. Farjami, and F. A. Mahyari (2009) Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode. Anal. Chem. 81: 7538–7543.
Tang, J., B. Kong, Y. Wang, M. Xu, Y. Wang, H. Wu, and G. Zheng (2013) Photoelectrochemical detection of glutathione by IrO2-Hemin-TiO2 nanowire arrays. Nano Lett. 13: 5350–5354.
Yuan, B., C. Xu, L. Liu, Q. Zhang, S. Ji, L. Pi, D. Zhang, and Q. Huo (2013) Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim. Acta. 104: 78–83.
Shahmiri, M. R., A. Bahari, H. Karimi-Maleh, R. Hosseinzadeh, and N. Mirnia (2013) Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B. Chem. 177: 70–77.
Raoof, J. B., R. Ojani, and M. Baghayeri (2009) Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sens. Actuators B. Chem. 143: 261–269.
Pang, H., Y. Shi, J. Du, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng, and B. Yuan (2012) Porous nickel oxide microflowers synthesized by calcination of coordination microflowers and their applications as glutathione electrochemical sensor and supercapacitors. Electrochim. Acta. 85: 256–262.
Ndamanisha, J. C., J. Bai, B. Qi, and L. Guo (2009) Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal. Biochem. 386: 79–84.
Hou, Y., J. C. Ndamanisha, L. Guo, X. Peng, and J. Bai (2009) Synthesis of ordered mesoporous carbon/cobalt oxide nanocomposite for determination of glutathione. Electrochim. Acta. 54: 6166–6171.
Yuan, B., X. Zeng, C. Xu, L. Liu, Y. Ma, D. Zhang, and Y. Fan (2013) Electrochemical modification of graphene oxide bearing different types of oxygen functional species for the electrocatalytic oxidation of reduced glutathione. Sens. Actuators B. Chem. 184: 15–20.
Pasakon, P., C. Karuwan, C. Sriprachuabwong, A. Wisitsoraat, D. Phokharatkul, T. Lomas, and A. Tuantranont (2013) Electrochemical detection of glutathione based on inkjet-printed graphene modified screen printed carbon paste electrode. Sens Lett. 11: 2218–2226.
Lee, P. T., K. R. Ward, K. Tschulik, G. Chapman, and R. G. Compton (2014) Electrochemical detection of glutathione using a poly(caffeic acid) nanocarbon composite modified electrode. Electroanalysis. 26: 366–373.
Zhu, W., G. Jiang, L. Xu, B. Li, Q. Cai, H. Jiang, and X. Zhou (2015) Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione. Anal. Chim. Acta. 886: 37–47.
Chatraei, F. and H. R. Zare (2011) Electrodeposited acetaminophen as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, glutathione, adrenaline and tryptophan. Analyst. 136: 4595–4602.
Mathiyarasu, J., S. Senthilkumar, K. L. N. Phani, and V. Yegnaraman (2008) PEDOT-Au nanocomposite film for electrochemical sensing. Mater. Lett. 62: 571–573.
Phongphut, A., C. Sriprachuabwong, A. Wisitsoraat, A. Tuantranont, S. Prichanont, and P. Sritongkham (2013) A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination. Sens. Actuators B. Chem. 178: 501–507.
Senthilkumar, S., J. Mathiyarasu, and K. L. Phani (2005) Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J. Electroanal. Chem. 578: 95–103.
Anandhakumar, S., J. Mathiyarasu, and K. L. N. Phani (2012) Anodic stripping voltammetric detection of mercury(II) using Au-PEDOT modified carbon paste electrode. Anal. Methods. 4: 2486–2489.
Mathiyarasu, J., S. Senthilkumar, K. L. N. Phani, and V. Yegnaraman (2007) PEDOT-Au nanocomposite films for electrochemical sensing of dopamine and uric acid. J. Nanosci. Nanotechnol. 7: 2206–2210.
Brust, M., M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman (1994) Synthesis of thiol-derivatised gold nanoparticles in a twophase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994: 801–802.
Jana, N. R., L. Gearheart, and C. J. Murphy (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir. 17: 6782–6786.
Rajaram, R., S. Anandhakumar, and J. Mathiyarasu (2015) Electrocatalytic oxidation of NADH at low overpotential using nanoporous poly(3,4)-ethylenedioxythiophene modified glassy carbon electrode. J. Electroanal. Chem. 746: 75–81.
Noh, J., E. Ito, K. Nakajima, J. Kim, H. Lee, and M. Hara (2002) High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au(111). J. Phys. Chem. B. 106: 7139–7141.
Inoue, T. and J. R. Kirchhoff (2000) Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 72: 5755–5760.
Agui, L., C. Pena-Farfal, P. Yanez-Sedeno, and J. M. Pingarron (2007) Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode. Talanta. 74: 412–420.
Zare, H. R., N. Nasirizadeh, S. M. Golabi, M. Namazian, M. Mazloum-Ardakani, and D. Nematollahi (2006) Electrochemical evaluation of coumestan modified carbon paste electrode: Study on its application as a NADH biosensor in presence of uric acid. Sens. Actuators B. Chem. 114: 610–617.
Raoof, J. B., R. Ojani, and Z. Mohammadpour (2010) Electrocatalytic oxidation and voltammetric determination of hydrazine by 1,1'-Ferrocenedicarboxylic acid at glassy carbon electrode. Int. J. Electrochem. Sci. 5: 177–188.
Kumar, A. V. N. and J. Joseph (2015) New Zn-NiHCF Hybrid electrochemically formed on glassy carbon: observation of thin layer diffusion during electro-oxidation of hydrazine. J. Phys. Chem. C. 119: 296–304.
Karimi-Maleh, H., M. Keyvanfard, K. Alizad, V. Khosravi, and M. Asnaashariisfahani (2012) Electrocatalytic determination of glutathione using multiwall carbon nanotubes paste electrode as a sensor and isoprenaline as a mediator. Int. J. Electrochem. Sci. 7: 6816–6830.