Attenuated Ca2+ release in a mouse model of limb girdle muscular dystrophy 2A
Tóm tắt
Mutations in CAPN3 cause limb girdle muscular dystrophy type 2A (LGMD2A), a progressive muscle wasting disease. CAPN3 is a non-lysosomal, Ca-dependent, muscle-specific proteinase. Ablation of CAPN3 (calpain-3 knockout (C3KO) mice) leads to reduced ryanodine receptor (RyR1) expression and abnormal Ca2+/calmodulin-dependent protein kinase II (Ca-CaMKII)-mediated signaling. We previously reported that Ca2+ release measured by fura2-FF imaging in response to single action potential stimulation was reduced in old C3KO mice; however, the use of field stimulation prevented investigation of the mechanisms underlying this impairment. Furthermore, our prior studies were conducted on older animals, whose muscles showed advanced muscular dystrophy, which prevented us from establishing whether impaired Ca2+ handling is an early feature of disease. In the current study, we sought to overcome these matters by studying single fibers isolated from young wild-type (WT) and C3KO mice using a low affinity calcium dye and high intracellular ethylene glycol-bis(2-aminoethylether)-n,n,n′,n′-tetraacetic acid (EGTA) to measure Ca2+ fluxes. Muscles were subjected to both current and voltage clamp conditions. Standard and confocal fluorescence microscopy was used to study Ca2+ release in single fibers enzymatically isolated from hind limb muscles of wild-type and C3KO mice. Two microelectrode amplifier and experiments were performed under current or voltage clamp conditions. Calcium concentration changes were detected with an impermeant low affinity dye in the presence of high EGTA intracellular concentrations, and fluxes were calculated with a single compartment model. Standard Western blotting analysis was used to measure the concentration of RyR1 and the α subunit of the dihydropyridine (αDHPR) receptors. Data are presented as mean ± SEM and compared with the Student’s test with significance set at p < 0.05. We found that the peak value of Ca2+ fluxes elicited by single action potentials was significantly reduced by 15–20 % in C3KO fibers, but the kinetics was unaltered. Ca2+ release elicited by tetanic stimulation was also impaired in C3KO fibers. Confocal studies confirmed that Ca2+ release was similarly reduced in all triads of C3KO mice. Voltage clamp experiments revealed a normal voltage dependence of Ca2+ release in C3KO mice but reduced peak Ca2+ fluxes as with action potential stimulation. These findings concur with biochemical observations of reduced RyR1 and αDHPR levels in C3KO muscles and reduced mechanical output. Confocal studies revealed a similar decrease in Ca2+ release at all triads consistent with a homogenous reduction of functional voltage activated Ca2+ release sites. Overall, these results suggest that decreased Ca2+ release is an early defect in calpainopathy and may contribute to the observed reduction of CaMKII activation in C3KO mice.
Tài liệu tham khảo
Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. Biochim Biophys Acta. 2012;1824(1):224–36.
Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995;81(1):27–40.
Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet. 2008;17(21):3271–80.
Franzini-Armstrong C. The sarcoplasmic reticulum and the control of muscle contraction. FASEB J. 1999;13 Suppl 2:S266–70.
Kramerova I, Kudryashova E, Tidball JG, Spencer MJ. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum Mol Genet. 2004;13(13):1373–88.
Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ. Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet. 2005;14(15):2125–34.
Kramerova I, Kudryashova E, Wu B, Germain S, Vandenborne K, Romain N, et al. Mitochondrial abnormalities, energy deficit and oxidative stress are features of calpain 3 deficiency in skeletal muscle. Hum Mol Genet. 2009;18(17):3194–205.
Ojima K, Ono Y, Ottenheijm C, Hata S, Suzuki H, Granzier H, et al. Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J Mol Biol. 2011;407(3):439–49.
Kramerova I, Kudryashova E, Ermolova N, Saenz A, Jaka O, Lopez de Munain A, et al. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3. Hum Mol Genet. 2012;21(14):3193–204.
Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem. 2006;75:19–37.
Juretic N, Urzua U, Munroe DJ, Jaimovich E, Riveros N. Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol. 2007;210(3):819–30.
Carrasco MA, Riveros N, Rios J, Muller M, Torres F, Pineda J, et al. Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells. Am J Physiol Cell Physiol. 2003;284(6):C1438–47.
Song LS, Sham JS, Stern MD, Lakatta EG, Cheng H. Direct measurement of SR release flux by tracking ‘Ca2+ spikes’ in rat cardiac myocytes. J Physiol. 1998;512(Pt 3):677–91.
Woods CE, Novo D, DiFranco M, Capote J, Vergara JL. Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres. J Physiol. 2005;568(Pt 3):867–80.
Woods CE, Novo D, DiFranco M, Vergara JL. The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol. 2004;557(Pt 1):59–75.
Escobar AL, Monck JR, Fernandez JM, Vergara JL. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature. 1994;367(6465):739–41.
DiFranco M, Woods CE, Capote J, Vergara JL. Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains. Proc Natl Acad Sci U S A. 2008;105(38):14698–703.
Gomez J, Neco P, DiFranco M, Vergara JL. Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques. J Gen Physiol. 2006;127(6):623–37.
DiFranco M, Quinonez M, Vergara JL. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers. J Gen Physiol. 2012;140(2):109–37.
DiFranco M, Tran P, Quinonez M, Vergara JL. Functional expression of transgenic 1sDHPR channels in adult mammalian skeletal muscle fibres. J Physiol. 2011;589(Pt 6):1421–42.
DiFranco M, Vergara JL. The Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers. J Gen Physiol. 2011;138(4):393–419.
DiFranco M, Yu C, Quinonez M, Vergara JL. Inward rectifier potassium currents in mammalian skeletal muscle fibres. J Physiol. 2015;593(5):1213–38.
DiFranco M, Capote J, Quinonez M, Vergara JL. Voltage-dependent dynamic FRET signals from the transverse tubules in mammalian skeletal muscle fibers. J Gen Physiol. 2007;130(6):581–600.
DiFranco M, Capote J, Vergara JL. Optical imaging and functional characterization of the transverse tubular system of mammalian muscle fibers using the potentiometric indicator di-8-ANEPPS. J Membr Biol. 2005;208(2):141–53.
DiFranco M, Novo D, Vergara JL. Characterization of the calcium release domains during excitation-contraction coupling in skeletal muscle fibres. Pflugers Arch. 2002;443(4):508–19.
Capote J, DiFranco M, Vergara JL. Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study. Am J Physiol Cell Physiol. 2010;298(5):C1077–86.
Prosser BL, Hernandez-Ochoa EO, Zimmer DB, Schneider MF. Simultaneous recording of intramembrane charge movement components and calcium release in wild-type and S100A1−/− muscle fibres. J Physiol. 2009;587(Pt 18):4543–59.
Yamaguchi N, Prosser BL, Ghassemi F, Xu L, Pasek DA, Eu JP, et al. Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1. Am J Physiol Cell Physiol. 2011;300(5):C998–C1012.
Braubach P, Orynbayev M, Andronache Z, Hering T, Landwehrmeyer GB, Lindenberg KS, et al. Altered Ca(2+) signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington’s disease. J Gen Physiol. 2014;144(5):393–413.
Avila G, O’Connell KM, Groom LA, Dirksen RT. Ca2+ release through ryanodine receptors regulates skeletal muscle L-type Ca2+ channel expression. J Biol Chem. 2001;276(21):17732–8.