Atomic Force Microscopy Investigation of Vaccinia Virus Structure

Journal of Virology - Tập 82 Số 15 - Trang 7551-7566 - 2008
Yurii G. Kuznetsov1,2, Paul D. Gershon1,2, A. McPherson1,2
1Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California 92697
2University of California, Irvine, Department of Molecular Biology and Biochemistry, 560 Stein-haus Hall, Irvine, CA 92697-3900.

Tóm tắt

ABSTRACTVaccinia virus was treated in a controlled manner with various combinations of nonionic detergents, reducing agents, and proteolytic enzymes, and successive products of the reactions were visualized using atomic force microscopy (AFM). Following removal of the outer lipid/protein membrane, a layer 20 to 40 nm in thickness was encountered that was composed of fibrous elements which, under reducing conditions, rapidly decomposed into individual monomers on the substrate. Beneath this layer was the virus core and its prominent lateral bodies, which could be dissociated or degraded with proteases. The core, in addition to the lateral bodies, was composed of a thick, multilayered shell of proteins of diverse sizes and shapes. The shell, which was readily etched with proteases, was thoroughly permeated with pores, or channels. Prolonged exposure to proteases and reductants produced disgorgement of the viral DNA from the remainders of the cores and also left residual, flattened, protease-resistant sacs on the imaging substrate. The DNA was readily visualized by AFM, which revealed some regions to be “soldered” by proteins, others to be heavily complexed with protein, and yet other parts to apparently exist as bundled, naked DNA. Prolonged exposure to proteases deproteinized the DNA, leaving masses of extended, free DNA. Estimates of the interior core volume suggest moderate but not extreme compaction of the genome.

Từ khóa


Tài liệu tham khảo

10.1128/MMBR.63.4.862-922.1999

10.1016/0022-2836(92)90523-M

Casjens, S., and P. Weigele. 2005. Headfull DNA packaging by bacteriophage P 22, p. 80-88. In C. Calalano (ed.), Viral genome packaging machines. Genetics, structure and mechanisms. Landis Publishing, Georgetown, TX.

10.1128/JVI.80.5.2127-2140.2006

10.1016/S0065-3527(06)66002-8

10.1073/pnas.0409825102

10.1083/jcb.13.2.303

Biology of poxviruses. 1981

10.1128/jvi.68.3.1935-1941.1994

10.1038/268598a0

10.1016/S0022-5320(66)80077-1

The orthopoxviruses. 1989

10.1016/0042-6822(90)90294-2

10.1128/JVI.75.22.11056-11070.2001

10.1128/JVI.75.22.11034-11055.2001

10.1128/JVI.77.20.10929-10942.2003

10.1146/annurev.bb.23.060194.000555

10.1016/S1367-5931(98)80086-0

10.1099/00221287-34-3-491

10.1083/jcb.200412169

10.1128/JVI.73.2.1503-1517.1999

Holowczak, J. A. 1982. Poxvirus DNA. Curr. Top. Microbiol. Immunol.97:27-79.

10.1016/0042-6822(75)90451-1

10.1128/jvi.50.3.929-938.1984

Ikoma, K., Y. Hiramatsu, F. Uno, M. Yoshida, and S. Nii. 1992. Ultra-high-resolution scanning electron microscopy of vaccinia virus and its recombinant carrying the gag gene of human immunodeficiency virus type 1. J. Electron Microsc. (Tokyo)41:167-173.

10.1006/viro.1993.1494

10.1016/j.chom.2007.08.005

Kim, K. S., and D. G. Sharp. 1966. Electron microscopic observations on the nature of vaccinia virus particle aggregation. J. Immunol.97:197-202.

10.1073/pnas.241486298

10.1016/S0021-9258(19)41618-9

10.1107/S0907444994005512

10.1099/0022-1317-82-9-2025

10.1016/j.jmb.2005.01.006

10.1016/S0006-3495(02)75366-6

10.1016/j.jsb.2004.10.007

10.1006/jsbi.1997.3936

10.1016/j.virol.2006.04.008

10.1016/j.virol.2006.10.015

Kuznetsov, Y. G., J. G. Victoria, A. Low, W. E. Robinson, Jr., H. Fan, and A. McPherson. 2004. Atomic force microscopy imaging of retroviruses: human immunodeficiency virus and murine leukemia virus. Scanning26:209-216.

10.1128/JVI.77.22.11896-11909.2003

10.1002/bip.10529

10.1128/JVI.77.11.6332-6340.2003

Malkin, A. J., M. Plomp, T. J. Leighton, A. McPherson, and K. E. Wheeler. 2006. Unraveling the architecture and structural dynamics of pathogens by high resolution in vitro atomic force microscopy, p. 32-85. InMicroscopy and microanalysis, vol. 11. Cambridge University Press, Cambridge, United Kingdom.

Malkin, A. J., M. Plomp, and A. McPherson. 2004. Unraveling the architecture of viruses by high-resolution atomic force microscopy, p. 85-108. In P. M. Lieberman (ed.), Virus structure and imaging, DNA viruses, methods and protocols. Humana Press, Totowa, NJ.

10.1016/0042-6822(70)90132-7

10.1099/0022-1317-5-2-211

Muller, G., and J. D. Williamson. 1987. Poxviridae, p. 421-433. In M. V. Nermut and A. C. Steven (ed.), Animal virus structure. Elsevier, New York, NY.

10.1016/0042-6822(62)90245-3

10.1016/0042-6822(64)90230-2

10.1016/0042-6822(62)90051-X

10.1016/0042-6822(62)90118-6

10.1016/S0002-9440(10)61145-5

10.1016/j.virol.2006.08.025

Roos, N., M. Cyrklaff, S. Cudmore, R. Blasco, J. Krijnse-Locker, and G. Griffiths. 1996. A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO J.15:2345-2355.

10.1128/JVI.78.15.8085-8093.2004

10.1016/0042-6822(76)90022-2

10.1006/viro.1994.1406

10.1099/00221287-34-1-67

10.1006/viro.1995.0061

10.1186/1743-422X-3-10