Atherosclerotic plaque features relevant to rupture-risk detected by clinical photon-counting CT ex vivo: a proof-of-concept study
Tóm tắt
To identify subjects with rupture-prone atherosclerotic plaques before thrombotic events occur is an unmet clinical need. Thus, this proof-of-concept study aims to determine which rupture-prone plaque features can be detected using clinically available photon-counting computed tomography (PCCT).
In this retrospective study, advanced atherosclerotic plaques (
Plaques from five men (age 79 ± 8 [mean ± standard deviation]) were included in the study. Comparing differences in coefficients (
Clinically available PCCT detects not only calcification, but also other rupture-prone features of human carotid plaques
Improved atherosclerotic plaque characterisation by photon-counting CT provides the ability to distinguish not only calcium, but also rupture-prone plaque features such as haemorrhage and thrombus. This may potentially improve monitoring and risk stratification of atherosclerotic patients in order to prevent strokes.
• CT of atherosclerotic plaques mainly detects calcium.
• Many components, such as intra-plaque haemorrhage and lipids, determine increased plaque rupture risk.
•
• Improved plaque photon-counting CT evaluation may refine risk stratification accuracy to prevent strokes.
Từ khóa
Tài liệu tham khảo
Sakakura K, Nakano M, Otsuka F et al (2013) Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 22(6):399–411. https://doi.org/10.1016/j.hlc.2013.03.001
World Health Organization (2020). World Health Organization. Global health estimates 2020: deaths by cause, age, sex, by country and by region, 2000-2019. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. Accessed 8 Nov 2023
Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325. https://doi.org/10.1056/NEJMoa035655
Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41(3):407–477. https://doi.org/10.1093/eurheartj/ehz425
Writing Committee M, Gulati M, Levy PD et al (2021) 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/ SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 78(22):e187–e285. https://doi.org/10.1016/j.jacc.2021.07.053
Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18(4):555–569. https://doi.org/10.3348/kjr.2017.18.4.555
Benson JC, Nardi V, Bois MC et al (2022) Correlation between computed tomography angiography and histology of carotid artery atherosclerosis: can semi-automated imaging software predict a plaque’s composition? Interv Neuroradiol 28(3):332–337. https://doi.org/10.1177/15910199211031093
Nandalur KR, Baskurt E, Hagspiel KD et al (2006) Carotid artery calcification on CT may independently predict stroke risk. AJR Am J Roentgenol 186(2):547–552. https://doi.org/10.2214/AJR.04.1216
Goncalves I, Sun J, Tengryd C et al (2021) Plaque vulnerability index predicts cardiovascular events: a histological study of an endarterectomy cohort. J Am Heart Assoc 10(15):e021038. https://doi.org/10.1161/JAHA.120.021038
Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part i. Circulation 108(14):1664–1672. https://doi.org/10.1161/01.CIR.0000087480.94275.97108/14/1664[pii]
Williams MC, Moss AJ, Dweck M et al (2019) Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol 73(3):291–301. https://doi.org/10.1016/j.jacc.2018.10.066
Mosleh W, Adib K, Natdanai P et al (2017) High-risk carotid plaques identified by CT-angiogram can predict acute myocardial infarction. Int J Cardiovasc Imaging 33(4):561–568. https://doi.org/10.1007/s10554-016-1019-5
Motoyama S, Kondo T, Sarai M et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326. https://doi.org/10.1016/j.jacc.2007.03.044
Baradaran H, Eisenmenger LB, Hinckley PJ et al (2021) Optimal carotid plaque features on computed tomography angiography associated with ischemic stroke. J Am Heart Assoc 10(5):e019462. https://doi.org/10.1161/JAHA.120.019462
Kamtchum-Tatuene J, Noubiap JJ, Wilman AH et al (2020) Prevalence of high-risk plaques and risk of stroke in patients with asymptomatic carotid stenosis: a meta-analysis. JAMA Neurol 77(12):1524–1535. https://doi.org/10.1001/jamaneurol.2020.2658
Buckler AJ, Sakamoto A, Pierre SS, Virmani R, Budoff MJ (2023) Virtual pathology: reaching higher standards for noninvasive CTA tissue characterization capability by using histology as a truth standard. Eur J Radiol 159:110686. https://doi.org/10.1016/j.ejrad.2022.110686
Buckler AJ, Gotto AM Jr, Rajeev A et al (2023) Atherosclerosis risk classification with computed tomography angiography: a radiologic-pathologic validation study. Atherosclerosis 366:42–48. https://doi.org/10.1016/j.atherosclerosis.2022.11.013
Karlof E, Buckler A, Liljeqvist ML et al (2021) Carotid plaque phenotyping by correlating plaque morphology from computed tomography angiography with transcriptional profiling. Eur J Vasc Endovasc Surg 62(5):716–726. https://doi.org/10.1016/j.ejvs.2021.07.011
Buckler AJ, Karlof E, Lengquist M et al (2021) Virtual transcriptomics: noninvasive phenotyping of atherosclerosis by decoding plaque biology from computed tomography angiography imaging. Arterioscler Thromb Vasc Biol 41(5):1738–1750. https://doi.org/10.1161/ATVBAHA.121.315969
Min JK, Chang HJ, Andreini D et al (2022) Coronary CTA plaque volume severity stages according to invasive coronary angiography and FFR. J Cardiovasc Comput Tomogr 16(5):415–422. https://doi.org/10.1016/j.jcct.2022.03.001
Hell MM, Motwani M, Otaki Y et al (2017) Quantitative global plaque characteristics from coronary computed tomography angiography for the prediction of future cardiac mortality during long-term follow-up. Eur Heart J Cardiovasc Imaging 18(12):1331–1339. https://doi.org/10.1093/ehjci/jex183
Ramanathan R, Dey D, Norgaard BL et al (2019) Carotid plaque composition by CT angiography in asymptomatic subjects: a head-to-head comparison to ultrasound. Eur Radiol 29(11):5920–5931. https://doi.org/10.1007/s00330-019-06086-y
Mannelli L, MacDonald L, Mancini M et al (2015) Dual energy computed tomography quantification of carotid plaques calcification: comparison between monochromatic and polychromatic energies with pathology correlation. Eur Radiol 25(5):1238–1246. https://doi.org/10.1007/s00330-014-3523-0
Li Z, Cao J, Bai X et al (2022) Utility of dual-layer spectral detector CTA to characterize carotid atherosclerotic plaque components: an imaging-histopathology comparison in patients undergoing endarterectomy. AJR Am J Roentgenol 218(3):517–525. https://doi.org/10.2214/AJR.21.26540
Leng S, Bruesewitz M, Tao S et al (2019) Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics 39(3):729–743. https://doi.org/10.1148/rg.2019180115
Meloni A, Frijia F, Panetta D et al (2023) Photon-counting computed tomography (PCCT): technical background and cardio-vascular applications. Diagnostics (Basel). 13(4):645. https://doi.org/10.3390/diagnostics13040645
Dahal S, Raja AY, Searle E et al (2023) Components of carotid atherosclerotic plaque in spectral photon-counting CT with histopathologic comparison. Eur Radiol 33(3):1612–1619. https://doi.org/10.1007/s00330-022-09155-x
Boccalini S, Si-Mohamed SA, Lacombe H et al (2022) First in-human results of computed tomography angiography for coronary stent assessment with a spectral photon counting computed tomography. Invest Radiol 57(4):212–221. https://doi.org/10.1097/RLI.0000000000000835
Si-Mohamed SA, Boccalini S, Lacombe H et al (2022) Coronary CT angiography with photon-counting CT: first-in-human results. Radiology 303(2):303–313. https://doi.org/10.1148/radiol.211780
Boussel L, Coulon P, Thran A et al (2014) Photon counting spectral CT component analysis of coronary artery atherosclerotic plaque samples. Br J Radiol 87(1040):20130798. https://doi.org/10.1259/bjr.20130798