At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences

Genes - Tập 10 Số 2 - Trang 118
Anna Y. Aksenova1, Sergei M. Mirkin2
1Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
2Department of Biology, Tufts University, Medford, MA 02421, USA

Tóm tắt

Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.

Từ khóa


Tài liệu tham khảo

Muller, 1938, The remaking of chromosomes, Collect. Net, 13, 181

McClintock, 1938, The fusion of broken ends of sister half chromatids following chromatid breakage at meiotic anaphase, Miss. Agric. Exp. Stn. Res. Bull, 190, 1

Muller, 1941, Induced mutations in Drosophila, Cold Spring Harb. Symp. Quant. Biol., 9, 151, 10.1101/SQB.1941.009.01.019

McClintock, 1941, The stability of broken ends of chromosomes in Zea Mays, Genetics, 26, 234, 10.1093/genetics/26.2.234

Watson, 1972, Origin of Concatemeric T7 DNA, Nat. New Biol., 239, 197, 10.1038/newbio239197a0

Olovnikov, 1973, A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181, 10.1016/0022-5193(73)90198-7

Greider, 1985, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405, 10.1016/0092-8674(85)90170-9

Lundblad, 1993, An alternative pathway for yeast telomere maintenance rescues est1-senescence, Cell, 73, 347, 10.1016/0092-8674(93)90234-H

Zakian, 1995, Telomeres: Beginning to understand the end, Science, 270, 1601, 10.1126/science.270.5242.1601

Wellinger, 1997, The DNA structures at the ends of eukaryotic chromosomes, Eur. J. Cancer, 33, 735, 10.1016/S0959-8049(97)00067-1

Gomes, 2010, Telomere biology in Metazoa, FEBS Lett., 584, 3741, 10.1016/j.febslet.2010.07.031

Traut, 2005, The evolutionary origin of insect telomeric repeats, (TTAGG) N, Chromosom. Res., 13, 145, 10.1007/s10577-005-7721-0

Grossmann, 2004, Phylogenetic distribution of TTAGG telomeric repeats in insects, Genome, 47, 163, 10.1139/g03-100

Fuchs, 1995, Telomere sequence localization and karyotype evolution in higher plants, Plant Syst. Evol., 196, 227, 10.1007/BF00982962

Fajkus, 2016, Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell, Front. Plant Sci., 7, 851

Delany, 2003, Telomeres in the chicken: Genome stability and chromosome ends, Poult. Sci., 82, 917, 10.1093/ps/82.6.917

Wellinger, 2012, Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: Beginning to end, Genetics, 191, 1073, 10.1534/genetics.111.137851

Makarov, 1997, Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening, Cell, 88, 657, 10.1016/S0092-8674(00)81908-X

Wright, 1997, Normal human chromosomes have long G-rich telomeric overhangs at one end, Genes Dev., 11, 2801, 10.1101/gad.11.21.2801

Zhao, 2008, Quantitative telomeric overhang determination using a double-strand specific nuclease, Nucleic Acids Res., 36, e14, 10.1093/nar/gkm1063

Yang, T.-L.B., Song, S., and Johnson, F.B. (2016). Contributions of telomere biology to human age-related disease. Handbook of the Biology of Aging, Elsevier.

Traverse, 1988, A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres, Proc. Natl. Acad. Sci. USA, 85, 8116, 10.1073/pnas.85.21.8116

Levis, 1993, Transposons in place of telomeric repeats at a Drosophila telomere, Cell, 75, 1083, 10.1016/0092-8674(93)90318-K

Nielsen, 1996, Terminal long tandem repeats in chromosomes form Chironomus pallidivittatus, Mol. Cell. Biol., 16, 3285, 10.1128/MCB.16.7.3285

Villasante, 2007, Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase, Genome Res., 17, 1909, 10.1101/gr.6365107

Anzai, 2001, Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)n by endonuclease of non-long terminal repeat retrotransposon TRAS1, Mol. Cell. Biol., 21, 100, 10.1128/MCB.21.1.100-108.2001

Fujiwara, 2011, Coevolution of telomeric repeats and telomeric repeat-specific non-LTR retrotransposons in insects, Mol. Biol. Evol., 28, 2983, 10.1093/molbev/msr135

Henderson, 1987, Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine·guanine base pairs, Cell, 51, 899, 10.1016/0092-8674(87)90577-0

Williamson, 1989, Monovalent cation-induced structure of telomeric DNA: The G-quartet model, Cell, 59, 871, 10.1016/0092-8674(89)90610-7

Sundquist, 1989, Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops, Nature, 342, 825, 10.1038/342825a0

Wang, 1993, Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex, Structure, 1, 263, 10.1016/0969-2126(93)90015-9

Parkinson, 2002, Crystal structure of parallel quadruplexes from human telomeric DNA, Nature, 417, 876, 10.1038/nature755

Chen, Y., and Yang, D. (2012). Sequence, stability, and structure of G-quadruplexes and their interactions with drugs. Current Protocols in Nucleic Acid Chemistry, John Wiley & Sons, Inc.

Zahler, 1991, Inhibition of telomerase by G-quartet DMA structures, Nature, 350, 718, 10.1038/350718a0

Smith, 2011, Rudimentary G-quadruplex–based telomere capping in Saccharomyces cerevisiae, Nat. Struct. Mol. Biol., 18, 478, 10.1038/nsmb.2033

Sen, 1988, Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis, Nature, 334, 364, 10.1038/334364a0

Schaffitzel, 2001, In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei, Proc. Natl. Acad. Sci. USA, 98, 8572, 10.1073/pnas.141229498

Biffi, 2013, Quantitative visualization of DNA G-quadruplex structures in human cells, Nat. Chem., 5, 182, 10.1038/nchem.1548

Lam, 2013, G-quadruplex structures are stable and detectable in human genomic DNA, Nat. Commun., 4, 1796, 10.1038/ncomms2792

Paeschke, 2011, DNA Replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase, Cell, 145, 678, 10.1016/j.cell.2011.04.015

Marsh, 1962, IUCr The crystal structure of cytosine-5-acetic acid, Acta Crystallogr., 15, 310, 10.1107/S0365110X62000791

Gehring, 1993, A tetrameric DNA structure with protonated cytosine-cytosine base pairs, Nature, 363, 561, 10.1038/363561a0

Day, 2014, i-Motif DNA: Structure, stability and targeting with ligands, Bioorg. Med. Chem., 22, 4407, 10.1016/j.bmc.2014.05.047

Griffith, 1999, Mammalian telomeres end in a large duplex loop, Cell, 97, 503, 10.1016/S0092-8674(00)80760-6

Hecht, 1997, SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast, Genes Dev., 11, 83, 10.1101/gad.11.1.83

Zaman, 2001, Telomere looping permits gene activation by a downstream UAS in yeast, Nature, 409, 109, 10.1038/35051119

Poschke, 2012, Getting in (and out of) the loop: Regulating higher order telomere structures, Front. Oncol., 2, 180

Kupiec, 2014, Biology of telomeres: Lessons from budding yeast, FEMS Microbiol. Rev., 38, 144, 10.1111/1574-6976.12054

Ceccaldi, 2016, Repair pathway choices and consequences at the double-strand break, Trends Cell Biol., 26, 52, 10.1016/j.tcb.2015.07.009

Kramara, 2018, Break-induced replication: The where, the why, and the how, Trends Genet., 34, 518, 10.1016/j.tig.2018.04.002

Heyer, 2015, Regulation of recombination and genomic maintenance, Cold Spring Harb. Perspect. Biol., 7, a016501, 10.1101/cshperspect.a016501

Seol, 2018, Microhomology-mediated end joining: Good, bad and ugly, Mutat. Res. Mol. Mech. Mutagen., 809, 81, 10.1016/j.mrfmmm.2017.07.002

Rodgers, 2016, Error-prone repair of DNA double-strand breaks, J. Cell. Physiol., 231, 15, 10.1002/jcp.25053

Broccoli, 1997, Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2, Nat. Genet., 17, 231, 10.1038/ng1097-231

Cesare, 2006, The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats, J. Biol. Chem., 281, 37486, 10.1074/jbc.M608778200

Palm, 2008, How shelterin protects mammalian telomeres, Annu. Rev. Genet., 42, 301, 10.1146/annurev.genet.41.110306.130350

Feuerhahn, 2015, No DDRama at chromosome ends: TRF2 takes centre stage, Trends Biochem. Sci., 40, 275, 10.1016/j.tibs.2015.03.003

Gao, 2007, RPA-like proteins mediate yeast telomere function, Nat. Struct. Mol. Biol., 14, 208, 10.1038/nsmb1205

Miyake, 2009, RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway, Mol. Cell, 36, 193, 10.1016/j.molcel.2009.08.009

Surovtseva, 2009, Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes, Mol. Cell, 36, 207, 10.1016/j.molcel.2009.09.017

Wellinger, 2009, The CST complex and telomere maintenance: The exception becomes the rule, Mol. Cell, 36, 168, 10.1016/j.molcel.2009.10.001

Sun, 2009, Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres, Genes Dev., 23, 2900, 10.1101/gad.1851909

Bryan, C., Rice, C., Harkisheimer, M., Schultz, D.C., and Skordalakes, E. (2013). Structure of the human telomeric Stn1-Ten1 capping complex. PLoS ONE, 8.

Wan, 2015, The Tetrahymena telomerase p75–p45–p19 subcomplex is a unique CST complex, Nat. Struct. Mol. Biol., 22, 1023, 10.1038/nsmb.3126

Rice, 2016, Structure and function of the telomeric CST complex, Comput. Struct. Biotechnol. J., 14, 161, 10.1016/j.csbj.2016.04.002

Murzin, 1993, OB(oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for non-homologous sequences, EMBO J., 12, 861, 10.1002/j.1460-2075.1993.tb05726.x

Arcus, 2002, OB-fold domains: A snapshot of the evolution of sequence, structure and function, Curr. Opin. Struct. Biol., 12, 794, 10.1016/S0959-440X(02)00392-5

Shore, 1994, RAP1: A protean regulator in yeast, Trends Genet., 10, 408, 10.1016/0168-9525(94)90058-2

Gilson, E., and Gasser, S.M. (1995). Repressor activator protein 1 and its ligands: organising chromatin domains. Nucleic Acids and Molecular Biology, Springer.

Konig, 1996, The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA, Cell, 85, 125, 10.1016/S0092-8674(00)81088-0

Taylor, 2000, How the multifunctional yeast Rap1p discriminates between DNA target sites: A crystallographic analysis, J. Mol. Biol., 303, 693, 10.1006/jmbi.2000.4161

Li, 2000, Identification of human Rap1: Implications for telomere evolution, Cell, 101, 471, 10.1016/S0092-8674(00)80858-2

Safari, 2004, The human Rap1 protein complex and modulation of telomere length, J. Biol. Chem., 279, 28585, 10.1074/jbc.M312913200

Kabir, 2010, Taking apart Rap1: An adaptor protein with telomeric and non-telomeric functions, Cell Cycle, 9, 4061, 10.4161/cc.9.20.13579

Sarthy, 2009, Human RAP1 inhibits non-homologous end joining at telomeres, EMBO J., 28, 3390, 10.1038/emboj.2009.275

Sfeir, 2010, Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal, Science, 327, 1657, 10.1126/science.1185100

Martinez, 2010, Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites, Nat. Cell Biol., 12, 768, 10.1038/ncb2081

Yeung, 2013, Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity, Cell Rep., 3, 1847, 10.1016/j.celrep.2013.05.032

Teixeira, 2005, Telomere maintenance, function and evolution: The yeast paradigm, Chromosom. Res., 13, 535, 10.1007/s10577-005-0999-0

Brigati, 1993, An essential yeast gene encoding a TTAGGG repeat-binding protein, Mol. Cell. Biol., 13, 1306

Koering, 2000, Identification of high affinity Tbf1p-binding sites within the budding yeast genome, Nucleic Acids Res., 28, 2519, 10.1093/nar/28.13.2519

Liu, 1991, A yeast protein that binds to vertebrate telomeres and conserved yeast telomeric junctions, Genes Dev., 5, 49, 10.1101/gad.5.1.49

Fourel, 1999, Cohabitation of insulators and silencing elements in yeast subtelomeric regions, EMBO J., 18, 2522, 10.1093/emboj/18.9.2522

Gottschling, 1990, Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription, Cell, 63, 751, 10.1016/0092-8674(90)90141-Z

Bilaud, 1996, The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human, Nucleic Acids Res., 24, 1294, 10.1093/nar/24.7.1294

Brevet, 2003, The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms, EMBO J., 22, 1697, 10.1093/emboj/cdg155

Alexander, 2003, Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast, EMBO J., 22, 1688, 10.1093/emboj/cdg154

Ribaud, 2012, DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1, EMBO J., 31, 138, 10.1038/emboj.2011.349

Lingner, 2007, Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast, EMBO Rep., 8, 1080, 10.1038/sj.embor.7401082

Preti, 2010, The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae, Mol. Cell, 38, 614, 10.1016/j.molcel.2010.04.016

Ichikawa, 2015, Nucleosome organization and chromatin dynamics in telomeres, Biomol. Concepts, 6, 67, 10.1515/bmc-2014-0035

Ichikawa, 2014, Telomeric repeats act as nucleosome-disfavouring sequences in vivo, Nucleic Acids Res., 42, 1541, 10.1093/nar/gkt1006

Yarragudi, 2004, Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae, Mol. Cell. Biol., 24, 9152, 10.1128/MCB.24.20.9152-9164.2004

Badis, 2008, A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters, Mol. Cell, 32, 878, 10.1016/j.molcel.2008.11.020

Kubik, 2018, Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription, Mol. Cell, 71, 89, 10.1016/j.molcel.2018.05.030

Kaplan, 2009, The DNA-encoded nucleosome organization of a eukaryotic genome, Nature, 458, 362, 10.1038/nature07667

Ganapathi, 2011, Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast, Nucleic Acids Res., 39, 2032, 10.1093/nar/gkq1161

Tsankov, 2011, Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization, Genome Res., 21, 1851, 10.1101/gr.122267.111

Struhl, 2013, Determinants of nucleosome positioning, Nat. Struct. Mol. Biol., 20, 267, 10.1038/nsmb.2506

Van Bakel, H., Tsui, K., Gebbia, M., Mnaimneh, S., Hughes, T.R., and Nislow, C. (2013). A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet., 9.

Kubik, 2015, Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast, Mol. Cell, 60, 422, 10.1016/j.molcel.2015.10.002

Krietenstein, 2016, Genomic nucleosome organization reconstituted with pure proteins, Cell, 167, 709, 10.1016/j.cell.2016.09.045

Yan, 2018, Systematic study of nucleosome-displacing factors in budding yeast, Mol. Cell, 71, 294, 10.1016/j.molcel.2018.06.017

Bonetti, 2013, Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends, EMBO J., 32, 275, 10.1038/emboj.2012.327

Bi, 1999, UASrpg can function as a heterochromatin boundary element in yeast, Genes Dev., 13, 1089, 10.1101/gad.13.9.1089

Bi, 2004, Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures, Mol. Cell. Biol., 24, 2118, 10.1128/MCB.24.5.2118-2131.2004

Donze, 2001, RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae, EMBO J., 20, 520, 10.1093/emboj/20.3.520

Gartenberg, 2016, The nuts and bolts of transcriptionally silent chromatin in Saccharomyces cerevisiae, Genetics, 203, 1563, 10.1534/genetics.112.145243

Fourel, 2002, General regulatory factors (GRFs) as genome partitioners, J. Biol. Chem., 277, 41736, 10.1074/jbc.M202578200

Tommerup, 1994, Unusual chromatin in human telomeres, Mol. Cell. Biol., 14, 5777

Tardat, 2018, Telomere chromatin establishment and its maintenance during mammalian development, Chromosoma, 127, 3, 10.1007/s00412-017-0656-3

Cubiles, 2018, Epigenetic features of human telomeres, Nucleic Acids Res., 46, 2347, 10.1093/nar/gky006

Ernst, 2011, Mapping and analysis of chromatin state dynamics in nine human cell types, Nature, 473, 43, 10.1038/nature09906

Rosenfeld, J.A., Wang, Z., Schones, D.E., Zhao, K., DeSalle, R., and Zhang, M.Q. (2009). Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genom., 10.

Kubicek, 2010, Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres, Nat. Struct. Mol. Biol., 17, 1218, 10.1038/nsmb.1897

2011, Arabidopsis thaliana telomeres exhibit euchromatic features, Nucleic Acids Res., 39, 2007, 10.1093/nar/gkq1119

Ivessa, 2002, Saccharomyces Rrm3p, a 5’ to 3’ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA, Genes Dev., 16, 1383, 10.1101/gad.982902

Makovets, 2004, Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions, Mol. Cell. Biol., 24, 4019, 10.1128/MCB.24.9.4019-4031.2004

Miller, 2006, Semi-conservative DNA replication through telomeres requires Taz1, Nature, 440, 824, 10.1038/nature04638

Sfeir, 2009, Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication, Cell, 138, 90, 10.1016/j.cell.2009.06.021

Lopes, 2011, G-quadruplex-induced instability during leading-strand replication, EMBO J., 30, 4033, 10.1038/emboj.2011.316

Bah, 2011, Telomerase is required to protect chromosomes with vertebrate-type T2AG3 3’ ends in Saccharomyces cerevisiae, J. Biol. Chem., 286, 27132, 10.1074/jbc.M111.220186

Anand, 2012, Overcoming natural replication barriers: Differential helicase requirements, Nucleic Acids Res., 40, 1091, 10.1093/nar/gkr836

Lormand, 2013, DNA polymerase δ stalls on telomeric lagging strand templates independently from G-quadruplex formation, Nucleic Acids Res., 41, 10323, 10.1093/nar/gkt813

Geronimo, 2016, Getting it done at the ends: Pif1 family DNA helicases and telomeres, DNA Repair, 44, 151, 10.1016/j.dnarep.2016.05.021

Croteau, 2014, Human RecQ helicases in DNA repair, recombination, and replication, Annu. Rev. Biochem., 83, 519, 10.1146/annurev-biochem-060713-035428

Mendoza, 2016, G-quadruplexes and helicases, Nucleic Acids Res., 44, 1989, 10.1093/nar/gkw079

Whitby, 2010, The FANCM family of DNA helicases/translocases, DNA Repair, 9, 224, 10.1016/j.dnarep.2009.12.012

Vannier, 2014, RTEL1: Functions of a disease-associated helicase, Trends Cell Biol., 24, 416, 10.1016/j.tcb.2014.01.004

Poole, 2016, SMARCAL1 and telomeres: Replicating the troublesome ends, Nucleus, 7, 270, 10.1080/19491034.2016.1179413

Niu, 2016, Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair, FEMS Yeast Res., 17, fow111, 10.1093/femsyr/fow111

Bianchi, 2007, Early replication of short telomeres in budding yeast, Cell, 128, 1051, 10.1016/j.cell.2007.01.041

Cooley, 2014, Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity, Cell Rep., 7, 53, 10.1016/j.celrep.2014.02.019

Hiraga, 2014, Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex, Genes Dev., 28, 372, 10.1101/gad.231258.113

Mattarocci, 2014, Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7, Cell Rep., 7, 62, 10.1016/j.celrep.2014.03.010

Hafner, 2018, Rif1 binding and control of chromosome-internal DNA replication origins is limited by telomere sequestration, Cell Rep., 23, 983, 10.1016/j.celrep.2018.03.113

Hafner, L., Shore, D., and Mattarocci, S. (2018). ChECing out Rif1 action in freely cycling cells. Curr. Genet., 1–6.

Hiraga, 2018, Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks, EMBO Rep., 19, e46222, 10.15252/embr.201846222

Arnoult, N., Schluth-Bolard, C., Letessier, A., Drascovic, I., Bouarich-Bourimi, R., Campisi, J., Kim, S., Boussouar, A., Ottaviani, A., and Magdinier, F. (2010). Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization. PLoS Genet., 6.

Azzalin, 2007, Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, Science, 318, 798, 10.1126/science.1147182

Schoeftner, 2008, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II, Nat. Cell Biol., 10, 228, 10.1038/ncb1685

Xu, 2010, Telomeric repeat-containing RNA structure in living cells, Proc. Natl. Acad. Sci. USA, 107, 14579, 10.1073/pnas.1001177107

Xu, 2008, G-quadruplex formation by human telomeric repeats-containing RNA in Na + solution, J. Am. Chem. Soc., 130, 11179, 10.1021/ja8031532

Martadinata, 2009, Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K + solution, J. Am. Chem. Soc., 131, 2570, 10.1021/ja806592z

Collie, 2010, A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex, Nucleic Acids Res., 38, 5569, 10.1093/nar/gkq259

Balk, 2013, Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence, Nat. Struct. Mol. Biol., 20, 1199, 10.1038/nsmb.2662

Aguilera, 2015, R loops: New modulators of genome dynamics and function, Nat. Rev. Genet., 16, 583, 10.1038/nrg3961

Gan, 2011, R-loop-mediated genomic instability is caused by impairment of replication fork progression, Genes Dev., 25, 2041, 10.1101/gad.17010011

Maicher, 2014, Breaking new ground: Digging into TERRA function, Biochim. Biophys. Acta, 1839, 387, 10.1016/j.bbagrm.2014.03.012

Arora, 2015, Telomere elongation chooses TERRA ALTernatives, RNA Biol., 12, 938, 10.1080/15476286.2015.1065374

Arora, 2014, RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells, Nat. Commun., 5, 5220, 10.1038/ncomms6220

Dilley, 2015, ALTernative telomere maintenance and cancer, Trends Cancer, 1, 145, 10.1016/j.trecan.2015.07.007

Cusanelli, 2013, Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres, Mol. Cell, 51, 780, 10.1016/j.molcel.2013.08.029

Moravec, 2016, TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe, EMBO Rep., 17, 999, 10.15252/embr.201541708

Graf, 2017, Telomere length determines TERRA and R-Loop regulation through the cell cycle, Cell, 170, 72, 10.1016/j.cell.2017.06.006

Deng, 2009, TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres, Mol. Cell, 35, 403, 10.1016/j.molcel.2009.06.025

Bah, 2012, The telomeric transcriptome: From fission yeast to mammals, Int. J. Biochem. Cell Biol., 44, 1055, 10.1016/j.biocel.2012.03.021

Rippe, 2015, TERRA and the state of the telomere, Nat. Struct. Mol. Biol., 22, 853, 10.1038/nsmb.3078

Luke, 2008, The Rat1p 5’ to 3’ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae, Mol. Cell, 32, 465, 10.1016/j.molcel.2008.10.019

Redon, 2010, The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase, Nucleic Acids Res., 38, 5797, 10.1093/nar/gkq296

Farnung, B.O., Brun, C.M., Arora, R., Lorenzi, L.E., and Azzalin, C.M. (2012). Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS ONE, 7.

Cusanelli, 2015, Telomeric repeat-containing RNA TERRA: A noncoding RNA connecting telomere biology to genome integrity, Front. Genet., 6, 143, 10.3389/fgene.2015.00143

Vrbsky, J., Akimcheva, S., Watson, J.M., Turner, T.L., Daxinger, L., Vyskot, B., Aufsatz, W., and Riha, K. (2010). siRNA–mediated methylation of Arabidopsis telomeres. PLoS Genet., 6.

Bah, 2012, The telomeric transcriptome of Schizosaccharomyces pombe, Nucleic Acids Res., 40, 2995, 10.1093/nar/gkr1153

Vu, 2014, Chromatin features of plant telomeric sequences at terminal vs. internal positions, Front. Plant Sci., 5, 593

Huang, 2014, Telomere regulation in pluripotent stem cells, Protein Cell, 5, 194, 10.1007/s13238-014-0028-1

Liu, 2017, Linking telomere regulation to stem cell pluripotency, Trends Genet., 33, 16, 10.1016/j.tig.2016.10.007

Bodnar, 1998, Extension of life-span by introduction of telomerase into normal human cells, Science, 279, 349, 10.1126/science.279.5349.349

Grossi, 2004, Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation, Genes Dev., 18, 992, 10.1101/gad.300004

Qi, 2000, The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein, Genes Dev., 14, 1777, 10.1101/gad.14.14.1777

Diede, 1999, Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta, Cell, 99, 723, 10.1016/S0092-8674(00)81670-0

Carson, 1985, CDC17: An essential gene that prevents telomere elongation in yeast, Cell, 42, 249, 10.1016/S0092-8674(85)80120-3

Adams, 1996, Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae, Mol. Cell. Biol., 16, 4614, 10.1128/MCB.16.9.4614

Dionne, 2000, The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis, Mol. Cell. Biol., 20, 786, 10.1128/MCB.20.3.786-796.2000

Parenteau, 2002, Differential processing of leading- and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease, Genetics, 162, 1583, 10.1093/genetics/162.4.1583

Casteel, 2009, A DNA polymerase alpha- primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells, J. Biol. Chem., 284, 5807, 10.1074/jbc.M807593200

Wang, 2012, Human CST has independent functions during telomere duplex replication and C-strand fill-in, Cell Rep., 2, 1096, 10.1016/j.celrep.2012.10.007

Chen, 2012, The human CST complex is a terminator of telomerase activity, Nature, 488, 540, 10.1038/nature11269

Price, 2010, Evolution of CST function in telomere maintenance, Cell Cycle, 9, 3157, 10.4161/cc.9.16.12547

Stewart, 2012, Human CST promotes telomere duplex replication and general replication restart after fork stalling, EMBO J., 31, 3537, 10.1038/emboj.2012.215

Wu, 2012, Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST, Cell, 150, 39, 10.1016/j.cell.2012.05.026

Chen, 2013, CST for the grand finale of telomere replication, Nucleus, 4, 277, 10.4161/nucl.25701

Goulian, 1990, The mechanism of action of an accessory protein for DNA polymerase alpha/primase, J. Biol. Chem., 265, 13231, 10.1016/S0021-9258(19)38289-4

Goulian, 1990, Purification and properties of an accessory protein for DNA polymerase alpha/primase, J. Biol. Chem., 265, 13221, 10.1016/S0021-9258(19)38288-2

Chandra, 2001, Cdc13 both positively and negatively regulates telomere replication, Genes Dev., 15, 404, 10.1101/gad.861001

Pennock, 2001, Cdc13 delivers separate complexes to the telomere for end protection and replication, Cell, 104, 387, 10.1016/S0092-8674(01)00226-4

Gopalakrishnan, 2017, Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication, Cell Cycle, 16, 1271, 10.1080/15384101.2017.1312235

Tseng, 2006, The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation, Nucleic Acids Res., 34, 6327, 10.1093/nar/gkl786

Shen, 2014, PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase, Nat. Commun., 5, 5312, 10.1038/ncomms6312

Hang, 2011, SUMOylation regulates telomere length homeostasis by targeting Cdc13, Nat. Struct. Mol. Biol., 18, 920, 10.1038/nsmb.2100

Greider, 2016, Regulating telomere length from the inside out: The replication fork model, Genes Dev., 30, 1483, 10.1101/gad.280578.116

Marcand, 1997, A protein-counting mechanism for telomere length regulation in yeast, Science, 275, 986, 10.1126/science.275.5302.986

Lundblad, 2002, Telomere maintenance without telomerase, Oncogene, 21, 522, 10.1038/sj.onc.1205079

Cesare, 2010, Alternative lengthening of telomeres: Models, mechanisms and implications, Nat. Rev. Genet., 11, 319, 10.1038/nrg2763

Bryan, 1995, Telomere elongation in immortal human cells without detectable telomerase activity, EMBO J., 14, 4240, 10.1002/j.1460-2075.1995.tb00098.x

Bryan, 1997, Telomere dynamics and telomerase activity in in vitro immortalised human cells, Eur. J. Cancer, 33, 767, 10.1016/S0959-8049(97)00065-8

Cerone, 2001, Telomere maintenance by telomerase and by recombination can coexist in human cells, Hum. Mol. Genet., 10, 1945, 10.1093/hmg/10.18.1945

Samassekou, 2013, Presence of alternative lengthening of telomeres associated circular extrachromosome telomere repeats in primary leukemia cells of chronic myeloid leukemia, J. Hematol. Oncol., 6, 26, 10.1186/1756-8722-6-26

Slatter, 2012, The alternative lengthening of telomeres pathway may operate in non-neoplastic human cells, J. Pathol., 226, 509, 10.1002/path.2981

Neumann, 2013, Alternative lengthening of telomeres in normal mammalian somatic cells, Genes Dev., 27, 18, 10.1101/gad.205062.112

Liu, 2007, Telomere lengthening early in development, Nat. Cell Biol., 9, 1436, 10.1038/ncb1664

Friml, 2008, Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants, Plant Mol. Biol., 66, 637, 10.1007/s11103-008-9295-7

Yu, 1990, In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs, Nature, 344, 126, 10.1038/344126a0

Singer, 1994, TLC1: Template RNA component of Saccharomyces cerevisiae telomerase, Science, 266, 404, 10.1126/science.7545955

McEachern, 1996, Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase, Genes Dev., 10, 1822, 10.1101/gad.10.14.1822

Teng, 1999, Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae, Mol. Cell. Biol., 19, 8083, 10.1128/MCB.19.12.8083

Le, 1999, RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase, Genetics, 152, 143, 10.1093/genetics/152.1.143

Chen, 2001, Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events, Mol. Cell. Biol., 21, 1819, 10.1128/MCB.21.5.1819-1827.2001

Huang, 2001, SGS1 is required for telomere elongation in the absence of telomerase, Curr. Biol., 11, 125, 10.1016/S0960-9822(01)00021-5

Cohen, 2001, Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase, Proc. Natl. Acad. Sci. USA, 98, 3174, 10.1073/pnas.061579598

Lydeard, 2007, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, 448, 820, 10.1038/nature06047

Teng, 2000, Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process, Mol. Cell, 6, 947, 10.1016/S1097-2765(05)00094-8

Johnson, 2001, The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase, EMBO J., 20, 905, 10.1093/emboj/20.4.905

Tsai, 2002, Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination, Mol. Cell. Biol., 22, 5679, 10.1128/MCB.22.16.5679-5687.2002

Maringele, 2004, Telomerase- and recombination-independent immortalization of budding yeast, Genes Dev., 18, 2663, 10.1101/gad.316504

Lee, 2008, Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination, J. Biol. Chem., 283, 29847, 10.1074/jbc.M804760200

Grandin, 2001, Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13, EMBO J., 20, 1173, 10.1093/emboj/20.5.1173

Murnane, 1994, Telomere dynamics in an immortal human cell line, EMBO J., 13, 4953, 10.1002/j.1460-2075.1994.tb06822.x

Cazes, 2004, Alternative lengthening of telomeres is characterized by high rates of telomeric exchange, Cancer Res., 64, 2324, 10.1158/0008-5472.CAN-03-4035

Cesare, 2004, Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops, Mol. Cell. Biol., 24, 9948, 10.1128/MCB.24.22.9948-9957.2004

Nabetani, 2009, Unusual telomeric DNAs in human telomerase-negative immortalized cells, Mol. Cell. Biol., 29, 703, 10.1128/MCB.00603-08

Yeager, 1999, Telomerase-negative immortalized human cells contain a novel type of Promyelocytic Leukemia (PML) body, Cancer Res., 59, 4175

Dilley, 2016, Break-induced telomere synthesis underlies alternative telomere maintenance, Nature, 539, 54, 10.1038/nature20099

Roumelioti, 2016, Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication, EMBO Rep., 17, 1731, 10.15252/embr.201643169

Min, J., Wright, W.E., and Shay, J.W. (2017). Alternative lengthening of telomeres mediated by mitotic DNA synthesis engages break-induced replication processes. Mol. Cell. Biol.

Sobinoff, 2017, BLM and SLX4 play opposing roles in recombination-dependent replication at human telomeres, EMBO J., 36, 2907, 10.15252/embj.201796889

Bournique, 2016, Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres, Cell Rep., 17, 1858, 10.1016/j.celrep.2016.10.048

Sobinoff, 2017, Alternative lengthening of telomeres: DNA repair pathways converge, Trends Genet., 33, 921, 10.1016/j.tig.2017.09.003

Heaphy, 2011, Altered telomeres in tumors with ATRX and DAXX mutations, Science, 333, 425, 10.1126/science.1207313

Lovejoy, C.A., Li, W., Reisenweber, S., Thongthip, S., Bruno, J., de Lange, T., De, S., Petrini, J.H.J., Sung, P.A., and Jasin, M. (2012). Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet., 8.

Schwartzentruber, 2012, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, Nature, 482, 226, 10.1038/nature10833

Haase, 2018, Mutant ATRX: Uncovering a new therapeutic target for glioma, Expert Opin. Ther. Targets, 22, 599, 10.1080/14728222.2018.1487953

Arnoult, 2014, Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1, Nat. Struct. Mol. Biol., 21, 167, 10.1038/nsmb.2754

Episkopou, 2014, Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin, Nucleic Acids Res., 42, 4391, 10.1093/nar/gku114

Kingston, 2009, Purification of proteins associated with specific genomic loci, Cell, 136, 175, 10.1016/j.cell.2008.11.045

Conomos, 2012, Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells, J. Cell Biol., 199, 893, 10.1083/jcb.201207189

Marzec, 2015, Nuclear-receptor-mediated telomere insertion leads to genome instability in ALT cancers, Cell, 160, 913, 10.1016/j.cell.2015.01.044

Conomos, 2014, NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination, Nat. Struct. Mol. Biol., 21, 760, 10.1038/nsmb.2877

Iglesias, 2011, Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast, EMBO Rep., 12, 587, 10.1038/embor.2011.73

Yu, 2014, Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase, Proc. Natl. Acad. Sci. USA, 111, 3377, 10.1073/pnas.1307415111

Wells, 1990, Telomere-related sequences at interstitial sites in the human genome, Genomics, 8, 699, 10.1016/0888-7543(90)90257-U

Azzalin, 2002, Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution, Hum. Genet., 110, 578, 10.1007/s00439-002-0730-6

Giulotto, 2005, Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates, Cytogenet. Genome Res., 108, 234, 10.1159/000080822

Nergadze, 2008, Telomeric repeats far from the ends: Mechanisms of origin and role in evolution, Cytogenet. Genome Res., 122, 219, 10.1159/000167807

He, 2013, Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species, Chromosom. Res., 21, 5, 10.1007/s10577-012-9332-x

2017, Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution, Mutat. Res. Mutat. Res., 773, 51, 10.1016/j.mrrev.2017.04.002

Weber, 1990, Characterization and organization of DNA sequences adjacent to the human telomere associated repeat (TTAGGG)n, Nucleic Acids Res., 18, 3353, 10.1093/nar/18.11.3353

Meyne, 1990, Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes, Chromosoma, 99, 3, 10.1007/BF01737283

Weber, 1991, Intrachromosomal location of the telomeric repeat (TTAGGG)n, Mamm. Genome, 1, 211, 10.1007/BF00352327

Cox, 1993, Comparison of plant telomere locations using a PCR-generated synthetic probe, Ann. Bot., 72, 239, 10.1006/anbo.1993.1104

Azzalin, 1997, Fluorescence in situ hybridization with a synthetic (T2AG3)n polynucleotide detects several intrachromosomal telomere-like repeats on human chromosomes, Cytogenet. Cell Genet., 78, 112, 10.1159/000134640

Mondello, 2000, Instability of interstitial telomeric sequences in the human genome, Genomics, 68, 111, 10.1006/geno.2000.6280

Azzalin, 2001, Human intrachromosomal telomeric-like repeats: Sequence organization and mechanisms of origin, Chromosoma, 110, 75, 10.1007/s004120100135

Uchida, 2002, Interstitial telomere-like repeats in the Arabidopsis thaliana genome, Genes Genet. Syst., 77, 63, 10.1266/ggs.77.63

Flint, 1997, Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains, Hum. Mol. Genet., 6, 1305, 10.1093/hmg/6.8.1305

Ambrosini, 2007, Human subtelomeric duplicon structure and organization, Genome Biol., 8, R151, 10.1186/gb-2007-8-7-r151

IJdo, 1991, Origin of human chromosome 2: An ancestral telomere-telomere fusion, Proc. Natl. Acad. Sci. USA, 88, 9051, 10.1073/pnas.88.20.9051

Fan, 2002, Genomic structure and evolution of the ancestral chromosome fusion site in 2q13-2q14.1 and paralogous regions on other human chromosomes, Genome Res., 12, 1651, 10.1101/gr.337602

Slijepcevic, 1998, Telomeres and mechanisms of Robertsonian fusion, Chromosoma, 107, 136, 10.1007/s004120050289

Capilla, 2015, On the origin of Robertsonian fusions in nature: Evidence of telomere shortening in wild house mice, J. Evol. Biol., 28, 241, 10.1111/jeb.12568

Rovatsos, 2011, Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents, Chromosom. Res., 19, 869, 10.1007/s10577-011-9242-3

Rovatsos, M., Kratochvíl, L., Altmanová, M., and Johnson Pokorná, M. (2015). Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE, 10.

Nergadze, 2007, Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution, Genome Biol., 8, R260, 10.1186/gb-2007-8-12-r260

Lin, 2008, Endings in the middle: Current knowledge of interstitial telomeric sequences, Mutat. Res., 658, 95, 10.1016/j.mrrev.2007.08.006

Nergadze, 2004, Insertion of telomeric repeats at intrachromosomal break sites during primate evolution, Genome Res., 14, 1704, 10.1101/gr.2778904

Simonet, 2011, The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats, Cell Res., 21, 1028, 10.1038/cr.2011.40

Wood, 2014, TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends, Nat. Commun., 5, 5467, 10.1038/ncomms6467

Jia, 2017, Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells, Nucleic Acids Res., 45, 1219, 10.1093/nar/gkw1170

Jia, 2018, The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences, DNA Repair, 65, 20, 10.1016/j.dnarep.2018.03.002

Lim, 2003, Telomere variability in the monocotyledonous plant order Asparagales, Proc. Biol. Sci., 270, 1893, 10.1098/rspb.2003.2446

Souza, 2016, Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae), Genetica, 144, 157, 10.1007/s10709-016-9886-1

Lim, 2003, The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG)n telomeres, Chromosoma, 112, 164, 10.1007/s00412-003-0256-2

Fajkus, 2015, Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome, Plant J., 82, 644, 10.1111/tpj.12839

Dumas, 2016, Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): Possible implications in evolution and phylogeny, J. Zool. Syst. Evol. Res., 54, 226, 10.1111/jzs.12131

Mazzoleni, 2017, Distribution of interstitial telomeric sequences in Primates and the Pygmy tree shrew (Scandentia), Cytogenet. Genome Res., 151, 141, 10.1159/000467634

Alvarez, 1993, Chromosomal radiosensitivity at intrachromosomal telomeric sites, Genes. Chromosomes Cancer, 8, 8, 10.1002/gcc.2870080103

Bertoni, 1996, Intrachromosomal telomere-like DNA sequences in Chinese hamster, Mamm. Genome, 7, 853, 10.1007/s003359900250

Musio, 1996, Spontaneous and aphidicolin-sensitive fragile site 3cen co-localizes with the (TTAGGG)n telomeric sequence in Chinese hamster cells, Cytogenet. Genome Res., 75, 159, 10.1159/000134469

Slijepcevic, 1996, Spontaneous and radiation-induced chromosomal breakage at interstitial telomeric sites, Chromosoma, 104, 596, 10.1007/BF00352299

Camats, 2006, Genomic instability in rat: Breakpoints induced by ionising radiation and interstitial telomeric-like sequences, Mutat. Res., 595, 156, 10.1016/j.mrfmmm.2005.11.002

Schneider, 2013, Chromosomal evolution of neotropical cichlids: The role of repetitive DNA sequences in the organization and structure of karyotype, Rev. Fish Biol. Fish., 23, 201, 10.1007/s11160-012-9285-3

Barros, 2017, Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?, Gene, 608, 20, 10.1016/j.gene.2017.01.013

Glugoski, 2018, Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish, Gene, 650, 49, 10.1016/j.gene.2018.01.099

Rosato, 2018, Inter- and intraspecific hypervariability in interstitial telomeric-like repeats (TTTAGGG)n in Anacyclus (Asteraceae), Ann. Bot., 122, 387, 10.1093/aob/mcy079

Bosco, 2012, A TRF1-controlled common fragile site containing interstitial telomeric sequences, Chromosoma, 121, 465, 10.1007/s00412-012-0377-6

Bianchi, 2006, Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations, Mutat. Res., 612, 189, 10.1016/j.mrrev.2005.12.003

Bianchi, 2010, Relationship between heterochromatic interstitial telomeric sequences and chromosome damage induced by the radiomimetic compound streptonigrin in Chinese hamster ovary cells, Mutat. Res., 684, 90, 10.1016/j.mrfmmm.2009.12.005

2012, Chromosomal aberrations involving telomeres and interstitial telomeric sequences, Mutagenesis, 27, 1, 10.1093/mutage/ger052

Swier, 2012, Do Time, heterochromatin, NORs, or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon (cotton rats)?, J. Hered., 103, 493, 10.1093/jhered/ess029

Hastie, 1989, Human telomeres: Fusion and interstitial sites, Trends Genet., 5, 326, 10.1016/0168-9525(89)90137-6

Yen, 1996, A polymorphic interstitial telomere array near the center of mouse chromosome 8, Mamm. Genome, 7, 218, 10.1007/s003359900059

Samassekou, 2011, Polymorphism in a human chromosome-specific interstitial telomere-like sequence at 22q11.2, Cytogenet. Genome Res., 134, 174, 10.1159/000328862

Pluta, 1989, Recombination occurs during telomere formation in yeast, Nature, 337, 429, 10.1038/337429a0

Ashley, 1993, A “hot spot” of recombination coincides with an interstitial telomeric sequence in the Armenian hamster, Cytogenet. Cell Genet., 62, 169, 10.1159/000133464

Goyanes, 1995, High frequency of mutagen-induced chromatid exchanges at interstitial telomere-like DNA sequence blocks of Chinese hamster cells, Chromosome Res., 3, 281, 10.1007/BF00713065

Day, 1998, Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells, Carcinogenesis, 19, 259, 10.1093/carcin/19.2.259

Wood, 2015, A beginning of the end: New insights into the functional organization of telomeres, Nucleus, 6, 172, 10.1080/19491034.2015.1048407

Kilburn, 2001, Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability, Mol. Cell. Biol., 21, 126, 10.1128/MCB.21.1.126-135.2001

Aksenova, 2013, Genome rearrangements caused by interstitial telomeric sequences in yeast, Proc. Natl. Acad. Sci. USA, 110, 19866, 10.1073/pnas.1319313110

Aksenova, 2015, Expansion of Interstitial Telomeric Sequences in Yeast, Cell Rep., 13, 1545, 10.1016/j.celrep.2015.10.023

Berger, 2007, Jumping translocations, Genes Chromosomes Cancer, 46, 717, 10.1002/gcc.20456

Park, 1992, The presence of interstitial telomeric sequences in constitutional chromosome abnormalities, Am. J. Hum. Genet., 50, 914

Rossi, 1993, Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences, J. Med. Genet., 30, 926, 10.1136/jmg.30.11.926

Devriendt, 1997, Trisomy 15 rescue with jumping translocation of distal 15q in Prader-Willi syndrome, J. Med. Genet., 34, 395, 10.1136/jmg.34.5.395

Vermeesch, 1997, Interstitial telomeric sequences at the junction site of a jumping translocation, Hum. Genet., 99, 735, 10.1007/s004390050440

Depetris, 2007, Recurrent rearrangements in the proximal 15q11-q14 region: A new breakpoint cluster specific to unbalanced translocations, Eur. J. Hum. Genet., 15, 432, 10.1038/sj.ejhg.5201775

Fortin, 2009, Frequency of chromosome healing and interstitial telomeres in 40 cases of constitutional abnormalities, Cytogenet. Genome Res., 125, 176, 10.1159/000230002

Lefort, 2001, Cytogenetic and molecular study of a jumping translocation in a baby with Dandy-Walker malformation, J. Med. Genet., 38, 67, 10.1136/jmg.38.1.67

Hatakeyama, 1998, Shortened telomeres involved in a case with a jumping translocation at 1q21, Blood, 91, 1514, 10.1182/blood.V91.5.1514

Cuthbert, 1999, Jumping translocation at 11q23 with MLL gene rearrangement and interstitial telomeric sequences, Genes Chromosomes Cancer, 24, 295, 10.1002/(SICI)1098-2264(199904)24:4<295::AID-GCC1>3.0.CO;2-8

Brizard, 2000, Interstitial telomere repeats in translocations of hematopoietic disorders, Leukemia, 14, 1630, 10.1038/sj.leu.2401876

Boutouil, 1996, Fragile site and interstitial telomere repeat sequences at the fusion point of a de novo (Y;13) translocation, Hum. Genet., 98, 323, 10.1007/s004390050216

Receveur, 2015, Involvement of interstitial telomeric sequences in two new cases of mosaicism for autosomal structural rearrangements, Am. J. Med. Genet. A, 167A, 428

Marlet, 2017, Prenatal diagnosis of trisomy 2p due to terminal 2p duplication including interstitial telomeric sequences, Cytogenet. Genome Res., 153, 117, 10.1159/000485392

Schleiermacher, 2005, Stepwise occurrence of a complex unbalanced translocation in neuroblastoma leading to insertion of a telomere sequence and late chromosome 17q gain, Oncogene, 24, 3377, 10.1038/sj.onc.1208486

Bodvarsdottir, 2012, Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines, Mutat. Res. Mol. Mech. Mutagen., 729, 90, 10.1016/j.mrfmmm.2011.10.002

Goto, G.H., Zencir, S., Hirano, Y., Ogi, H., Ivessa, A., and Sugimoto, K. (2015). Binding of multiple Rap1 proteins stimulates chromosome breakage induction during DNA replication. PLoS Genet., 11.

Larcher, M.V., Pasquier, E., MacDonald, R.S., and Wellinger, R.J. (2016). Ku Binding on telomeres occurs at sites distal from the physical chromosome ends. PLoS Genet., 12.

Yang, 2011, Human telomeric proteins occupy selective interstitial sites, Cell Res., 21, 1013, 10.1038/cr.2011.39

Ye, 2010, TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage, Cell, 142, 230, 10.1016/j.cell.2010.05.032

Depetris, 2002, A human interstitial telomere associates in vivo with specific TRF2 and TIN2 proteins, Eur. J. Hum. Genet., 10, 107, 10.1038/sj.ejhg.5200775

Krutilina, 2001, A negative regulator of telomere-length protein TRF1 is associated with interstitial (TTAGGG)n blocks in immortal Chinese hamster ovary cells, Biochem. Biophys. Res. Commun., 280, 471, 10.1006/bbrc.2000.4143

Krutilina, 2003, Protection of internal (TTAGGG)n repeats in Chinese hamster cells by telomeric protein TRF1, Oncogene, 22, 6690, 10.1038/sj.onc.1206745

Gu, 2017, Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis, Oncogene, 36, 1939, 10.1038/onc.2016.405

Ilic, 2017, Ubiquitin C-terminal hydrolase isozyme L1 is associated with shelterin complex at interstitial telomeric sites, Epigenetics Chromatin, 10, 54, 10.1186/s13072-017-0160-2

Robin, 2014, Telomere position effect: Regulation of gene expression with progressive telomere shortening over long distances, Genes Dev., 28, 2464, 10.1101/gad.251041.114

Robin, 2015, SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy, Genome Res., 25, 1781, 10.1101/gr.190660.115

Grunstein, 1997, Molecular model for telomeric heterochromatin in yeast, Curr. Opin. Cell Biol., 9, 383, 10.1016/S0955-0674(97)80011-7

Kim, W., Ludlow, A.T., Min, J., Robin, J.D., Stadler, G., Mender, I., Lai, T.-P., Zhang, N., Wright, W.E., and Shay, J.W. (2016). Regulation of the human telomerase gene TERT by telomere position effect—over long distances (TPE-OLD): Implications for aging and cancer. PLoS Biol., 14.

Shay, 2018, Telomeres and aging, Curr. Opin. Cell Biol., 52, 1, 10.1016/j.ceb.2017.12.001

Mukherjee, A.K., Sharma, S., Sengupta, S., Saha, D., Kumar, P., Hussain, T., Srivastava, V., Roy, S.D., Shay, J.W., and Chowdhury, S. (2018). Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends. PLoS Genet., 14.

Berthiau, 2006, Subtelomeric proteins negatively regulate telomere elongation in budding yeast, EMBO J., 25, 846, 10.1038/sj.emboj.7600975

Huettel, 2007, RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants, Biochim. Biophys. Acta Gene Struct. Expr., 1769, 358, 10.1016/j.bbaexp.2007.03.001

Matzke, 2014, RNA-directed DNA methylation: An epigenetic pathway of increasing complexity, Nat. Rev. Genet., 15, 394, 10.1038/nrg3683

Marcomini, 2018, Asymmetric processing of DNA ends at a double-strand break leads to unconstrained dynamics and ectopic translocation, Cell Rep., 24, 2614, 10.1016/j.celrep.2018.07.102

Moore, 2018, Genetic control of genomic alterations induced in yeast by interstitial telomeric sequences, Genetics, 209, 425, 10.1534/genetics.118.300950

Adam, 1991, Telomeric location of Giardia rDNA genes, Mol. Cell. Biol., 11, 3326

Yu, 1991, Developmentally programmed healing of chromosomes by telomerase in Tetrahymena, Cell, 67, 823, 10.1016/0092-8674(91)90077-C

Butler, 1992, Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora, Genetics, 131, 581, 10.1093/genetics/131.3.581

Salvadori, 1995, Colocalization of (TTAGGG)n telomeric sequences and ribosomal genes in Atlantic eels, Chromosom. Res., 3, 54, 10.1007/BF00711162

1996, Localization of the repetitive telomeric sequence (TTAGGG) n in four salmonid species, Genome, 39, 1035, 10.1139/g96-129

Copenhaver, 1996, RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4, Plant J., 9, 259, 10.1046/j.1365-313X.1996.09020259.x

Liu, 1999, Telomeric (TTAGGG)n sequences are associated with nucleolus organizer regions (NORs) in the wood lemming, Chromosom. Res., 7, 235, 10.1023/A:1009255517764

Stimpson, K.M., Sullivan, L.L., Kuo, M.E., and Sullivan, B.A. (2014). Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS ONE, 9.

Villasante, 2007, Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome, Proc. Natl. Acad. Sci. USA, 104, 10542, 10.1073/pnas.0703808104

Rocchi, 2012, Centromere repositioning in mammals, Heredity, 108, 59, 10.1038/hdy.2011.101

Mirkin, 2007, Replication fork stalling at natural impediments, Microbiol. Mol. Biol. Rev., 71, 13, 10.1128/MMBR.00030-06

Yu, 1999, Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae, Mol. Cell. Biol., 19, 5279, 10.1128/MCB.19.8.5279

Morse, 2000, RAP, RAP, open up! New wrinkles for RAP1 in yeast, Trends Genet., 16, 51, 10.1016/S0168-9525(99)01936-8

Xie, 2019, DNA fragility in the parallel evolution of pelvic reduction in stickleback fish, Science, 363, 81, 10.1126/science.aan1425

Labib, 2007, Replication fork barriers: Pausing for a break or stalling for time?, EMBO Rep., 8, 346, 10.1038/sj.embor.7400940

Hodgson, 2007, Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase, Mol. Biol. Cell, 18, 3894, 10.1091/mbc.e07-05-0500

Leman, 2012, Timeless preserves telomere length by promoting efficient DNA replication through human telomeres, Cell Cycle, 11, 2337, 10.4161/cc.20810

Gadaleta, M.C., Das, M.M., Tanizawa, H., Chang, Y.-T., Noma, K., Nakamura, T.M., and Noguchi, E. (2016). Swi1Timeless prevents repeat instability at fission yeast telomeres. PLoS Genet., 12.

Mazzoccoli, 2012, Altered expression of the clock gene machinery in kidney cancer patients, Biomed. Pharmacother., 66, 175, 10.1016/j.biopha.2011.11.007

Mao, Y., Fu, A., Leaderer, D., Zheng, T., Chen, K., and Zhu, Y. (2013). Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses. BMC Cancer, 13.

Relles, 2013, Circadian gene expression and clinicopathologic correlates in pancreatic cancer, J. Gastrointest. Surg., 17, 443, 10.1007/s11605-012-2112-2

Baldeyron, 2015, TIPIN depletion leads to apoptosis in breast cancer cells, Mol. Oncol., 9, 1580, 10.1016/j.molonc.2015.04.010

Chi, 2017, TIMELESS contributes to the progression of breast cancer through activation of MYC, Breast Cancer Res., 19, 53, 10.1186/s13058-017-0838-1

Zhang, 2017, Aberrant TIMELESS expression is associated with poor clinical survival and lymph node metastasis in early-stage cervical carcinoma, Int. J. Oncol., 50, 173, 10.3892/ijo.2016.3784

Parenteau, 1999, Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27, Mol. Cell. Biol., 19, 4143, 10.1128/MCB.19.6.4143

Saharia, 2008, Flap endonuclease 1 contributes to telomere stability, Curr. Biol., 18, 496, 10.1016/j.cub.2008.02.071

Moser, 2009, Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres, EMBO J., 28, 810, 10.1038/emboj.2009.31

Gatbonton, T., Imbesi, M., Nelson, M., Akey, J.M., Ruderfer, D.M., Kruglyak, L., Simon, J.A., and Bedalov, A. (2006). Telomere length as a quantitative trait: Genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet., 2.

Fallet, 2014, Length-dependent processing of telomeres in the absence of telomerase, Nucleic Acids Res., 42, 3648, 10.1093/nar/gkt1328

Johnson, 1992, Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome, Mol. Cell. Biol., 12, 3807

Luke-Glaser, S., and Luke, B. (2012). The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast. PLoS ONE, 7.

Donnianni, 2014, Template switching during break-induced replication is promoted by the mph1 helicase in Saccharomyces cerevisiae, Genetics, 196, 1017, 10.1534/genetics.114.162297

Motegi, 2008, Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks, Proc. Natl. Acad. Sci. USA, 105, 12411, 10.1073/pnas.0805685105

Unk, 2010, Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance, DNA Repair, 9, 257, 10.1016/j.dnarep.2009.12.013

Vannier, 2013, RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication, Science, 342, 239, 10.1126/science.1241779

Vannier, 2012, RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity, Cell, 149, 795, 10.1016/j.cell.2012.03.030

Ballew, B.J., Joseph, V., De, S., Sarek, G., Vannier, J.-B., Stracker, T., Schrader, K.A., Small, T.N., O’Reilly, R., and Manschreck, C. (2013). A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet., 9.

Deng, 2013, Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome, Proc. Natl. Acad. Sci. USA, 110, E3408, 10.1073/pnas.1300600110

Pan, 2017, FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres, Proc. Natl. Acad. Sci. USA, 114, E5940, 10.1073/pnas.1708065114

Neil, 2017, Precarious maintenance of simple DNA repeats in eukaryotes, BioEssays, 39, 1700077, 10.1002/bies.201700077