At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences
Tóm tắt
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Từ khóa
Tài liệu tham khảo
Muller, 1938, The remaking of chromosomes, Collect. Net, 13, 181
McClintock, 1938, The fusion of broken ends of sister half chromatids following chromatid breakage at meiotic anaphase, Miss. Agric. Exp. Stn. Res. Bull, 190, 1
Muller, 1941, Induced mutations in Drosophila, Cold Spring Harb. Symp. Quant. Biol., 9, 151, 10.1101/SQB.1941.009.01.019
McClintock, 1941, The stability of broken ends of chromosomes in Zea Mays, Genetics, 26, 234, 10.1093/genetics/26.2.234
Olovnikov, 1973, A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181, 10.1016/0022-5193(73)90198-7
Greider, 1985, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405, 10.1016/0092-8674(85)90170-9
Lundblad, 1993, An alternative pathway for yeast telomere maintenance rescues est1-senescence, Cell, 73, 347, 10.1016/0092-8674(93)90234-H
Zakian, 1995, Telomeres: Beginning to understand the end, Science, 270, 1601, 10.1126/science.270.5242.1601
Wellinger, 1997, The DNA structures at the ends of eukaryotic chromosomes, Eur. J. Cancer, 33, 735, 10.1016/S0959-8049(97)00067-1
Traut, 2005, The evolutionary origin of insect telomeric repeats, (TTAGG) N, Chromosom. Res., 13, 145, 10.1007/s10577-005-7721-0
Grossmann, 2004, Phylogenetic distribution of TTAGG telomeric repeats in insects, Genome, 47, 163, 10.1139/g03-100
Fuchs, 1995, Telomere sequence localization and karyotype evolution in higher plants, Plant Syst. Evol., 196, 227, 10.1007/BF00982962
Fajkus, 2016, Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell, Front. Plant Sci., 7, 851
Delany, 2003, Telomeres in the chicken: Genome stability and chromosome ends, Poult. Sci., 82, 917, 10.1093/ps/82.6.917
Wellinger, 2012, Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: Beginning to end, Genetics, 191, 1073, 10.1534/genetics.111.137851
Makarov, 1997, Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening, Cell, 88, 657, 10.1016/S0092-8674(00)81908-X
Wright, 1997, Normal human chromosomes have long G-rich telomeric overhangs at one end, Genes Dev., 11, 2801, 10.1101/gad.11.21.2801
Zhao, 2008, Quantitative telomeric overhang determination using a double-strand specific nuclease, Nucleic Acids Res., 36, e14, 10.1093/nar/gkm1063
Yang, T.-L.B., Song, S., and Johnson, F.B. (2016). Contributions of telomere biology to human age-related disease. Handbook of the Biology of Aging, Elsevier.
Traverse, 1988, A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres, Proc. Natl. Acad. Sci. USA, 85, 8116, 10.1073/pnas.85.21.8116
Levis, 1993, Transposons in place of telomeric repeats at a Drosophila telomere, Cell, 75, 1083, 10.1016/0092-8674(93)90318-K
Nielsen, 1996, Terminal long tandem repeats in chromosomes form Chironomus pallidivittatus, Mol. Cell. Biol., 16, 3285, 10.1128/MCB.16.7.3285
Villasante, 2007, Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase, Genome Res., 17, 1909, 10.1101/gr.6365107
Anzai, 2001, Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)n by endonuclease of non-long terminal repeat retrotransposon TRAS1, Mol. Cell. Biol., 21, 100, 10.1128/MCB.21.1.100-108.2001
Fujiwara, 2011, Coevolution of telomeric repeats and telomeric repeat-specific non-LTR retrotransposons in insects, Mol. Biol. Evol., 28, 2983, 10.1093/molbev/msr135
Henderson, 1987, Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine·guanine base pairs, Cell, 51, 899, 10.1016/0092-8674(87)90577-0
Williamson, 1989, Monovalent cation-induced structure of telomeric DNA: The G-quartet model, Cell, 59, 871, 10.1016/0092-8674(89)90610-7
Sundquist, 1989, Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops, Nature, 342, 825, 10.1038/342825a0
Wang, 1993, Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex, Structure, 1, 263, 10.1016/0969-2126(93)90015-9
Parkinson, 2002, Crystal structure of parallel quadruplexes from human telomeric DNA, Nature, 417, 876, 10.1038/nature755
Chen, Y., and Yang, D. (2012). Sequence, stability, and structure of G-quadruplexes and their interactions with drugs. Current Protocols in Nucleic Acid Chemistry, John Wiley & Sons, Inc.
Zahler, 1991, Inhibition of telomerase by G-quartet DMA structures, Nature, 350, 718, 10.1038/350718a0
Smith, 2011, Rudimentary G-quadruplex–based telomere capping in Saccharomyces cerevisiae, Nat. Struct. Mol. Biol., 18, 478, 10.1038/nsmb.2033
Sen, 1988, Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis, Nature, 334, 364, 10.1038/334364a0
Schaffitzel, 2001, In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei, Proc. Natl. Acad. Sci. USA, 98, 8572, 10.1073/pnas.141229498
Biffi, 2013, Quantitative visualization of DNA G-quadruplex structures in human cells, Nat. Chem., 5, 182, 10.1038/nchem.1548
Lam, 2013, G-quadruplex structures are stable and detectable in human genomic DNA, Nat. Commun., 4, 1796, 10.1038/ncomms2792
Paeschke, 2011, DNA Replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase, Cell, 145, 678, 10.1016/j.cell.2011.04.015
Marsh, 1962, IUCr The crystal structure of cytosine-5-acetic acid, Acta Crystallogr., 15, 310, 10.1107/S0365110X62000791
Gehring, 1993, A tetrameric DNA structure with protonated cytosine-cytosine base pairs, Nature, 363, 561, 10.1038/363561a0
Day, 2014, i-Motif DNA: Structure, stability and targeting with ligands, Bioorg. Med. Chem., 22, 4407, 10.1016/j.bmc.2014.05.047
Griffith, 1999, Mammalian telomeres end in a large duplex loop, Cell, 97, 503, 10.1016/S0092-8674(00)80760-6
Hecht, 1997, SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast, Genes Dev., 11, 83, 10.1101/gad.11.1.83
Zaman, 2001, Telomere looping permits gene activation by a downstream UAS in yeast, Nature, 409, 109, 10.1038/35051119
Poschke, 2012, Getting in (and out of) the loop: Regulating higher order telomere structures, Front. Oncol., 2, 180
Kupiec, 2014, Biology of telomeres: Lessons from budding yeast, FEMS Microbiol. Rev., 38, 144, 10.1111/1574-6976.12054
Ceccaldi, 2016, Repair pathway choices and consequences at the double-strand break, Trends Cell Biol., 26, 52, 10.1016/j.tcb.2015.07.009
Kramara, 2018, Break-induced replication: The where, the why, and the how, Trends Genet., 34, 518, 10.1016/j.tig.2018.04.002
Heyer, 2015, Regulation of recombination and genomic maintenance, Cold Spring Harb. Perspect. Biol., 7, a016501, 10.1101/cshperspect.a016501
Seol, 2018, Microhomology-mediated end joining: Good, bad and ugly, Mutat. Res. Mol. Mech. Mutagen., 809, 81, 10.1016/j.mrfmmm.2017.07.002
Rodgers, 2016, Error-prone repair of DNA double-strand breaks, J. Cell. Physiol., 231, 15, 10.1002/jcp.25053
Broccoli, 1997, Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2, Nat. Genet., 17, 231, 10.1038/ng1097-231
Cesare, 2006, The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats, J. Biol. Chem., 281, 37486, 10.1074/jbc.M608778200
Palm, 2008, How shelterin protects mammalian telomeres, Annu. Rev. Genet., 42, 301, 10.1146/annurev.genet.41.110306.130350
Feuerhahn, 2015, No DDRama at chromosome ends: TRF2 takes centre stage, Trends Biochem. Sci., 40, 275, 10.1016/j.tibs.2015.03.003
Gao, 2007, RPA-like proteins mediate yeast telomere function, Nat. Struct. Mol. Biol., 14, 208, 10.1038/nsmb1205
Miyake, 2009, RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway, Mol. Cell, 36, 193, 10.1016/j.molcel.2009.08.009
Surovtseva, 2009, Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes, Mol. Cell, 36, 207, 10.1016/j.molcel.2009.09.017
Wellinger, 2009, The CST complex and telomere maintenance: The exception becomes the rule, Mol. Cell, 36, 168, 10.1016/j.molcel.2009.10.001
Sun, 2009, Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres, Genes Dev., 23, 2900, 10.1101/gad.1851909
Bryan, C., Rice, C., Harkisheimer, M., Schultz, D.C., and Skordalakes, E. (2013). Structure of the human telomeric Stn1-Ten1 capping complex. PLoS ONE, 8.
Wan, 2015, The Tetrahymena telomerase p75–p45–p19 subcomplex is a unique CST complex, Nat. Struct. Mol. Biol., 22, 1023, 10.1038/nsmb.3126
Rice, 2016, Structure and function of the telomeric CST complex, Comput. Struct. Biotechnol. J., 14, 161, 10.1016/j.csbj.2016.04.002
Murzin, 1993, OB(oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for non-homologous sequences, EMBO J., 12, 861, 10.1002/j.1460-2075.1993.tb05726.x
Arcus, 2002, OB-fold domains: A snapshot of the evolution of sequence, structure and function, Curr. Opin. Struct. Biol., 12, 794, 10.1016/S0959-440X(02)00392-5
Shore, 1994, RAP1: A protean regulator in yeast, Trends Genet., 10, 408, 10.1016/0168-9525(94)90058-2
Gilson, E., and Gasser, S.M. (1995). Repressor activator protein 1 and its ligands: organising chromatin domains. Nucleic Acids and Molecular Biology, Springer.
Konig, 1996, The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA, Cell, 85, 125, 10.1016/S0092-8674(00)81088-0
Taylor, 2000, How the multifunctional yeast Rap1p discriminates between DNA target sites: A crystallographic analysis, J. Mol. Biol., 303, 693, 10.1006/jmbi.2000.4161
Li, 2000, Identification of human Rap1: Implications for telomere evolution, Cell, 101, 471, 10.1016/S0092-8674(00)80858-2
Safari, 2004, The human Rap1 protein complex and modulation of telomere length, J. Biol. Chem., 279, 28585, 10.1074/jbc.M312913200
Kabir, 2010, Taking apart Rap1: An adaptor protein with telomeric and non-telomeric functions, Cell Cycle, 9, 4061, 10.4161/cc.9.20.13579
Sarthy, 2009, Human RAP1 inhibits non-homologous end joining at telomeres, EMBO J., 28, 3390, 10.1038/emboj.2009.275
Sfeir, 2010, Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal, Science, 327, 1657, 10.1126/science.1185100
Martinez, 2010, Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites, Nat. Cell Biol., 12, 768, 10.1038/ncb2081
Yeung, 2013, Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity, Cell Rep., 3, 1847, 10.1016/j.celrep.2013.05.032
Teixeira, 2005, Telomere maintenance, function and evolution: The yeast paradigm, Chromosom. Res., 13, 535, 10.1007/s10577-005-0999-0
Brigati, 1993, An essential yeast gene encoding a TTAGGG repeat-binding protein, Mol. Cell. Biol., 13, 1306
Koering, 2000, Identification of high affinity Tbf1p-binding sites within the budding yeast genome, Nucleic Acids Res., 28, 2519, 10.1093/nar/28.13.2519
Liu, 1991, A yeast protein that binds to vertebrate telomeres and conserved yeast telomeric junctions, Genes Dev., 5, 49, 10.1101/gad.5.1.49
Fourel, 1999, Cohabitation of insulators and silencing elements in yeast subtelomeric regions, EMBO J., 18, 2522, 10.1093/emboj/18.9.2522
Gottschling, 1990, Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription, Cell, 63, 751, 10.1016/0092-8674(90)90141-Z
Bilaud, 1996, The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human, Nucleic Acids Res., 24, 1294, 10.1093/nar/24.7.1294
Brevet, 2003, The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms, EMBO J., 22, 1697, 10.1093/emboj/cdg155
Alexander, 2003, Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast, EMBO J., 22, 1688, 10.1093/emboj/cdg154
Ribaud, 2012, DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1, EMBO J., 31, 138, 10.1038/emboj.2011.349
Lingner, 2007, Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast, EMBO Rep., 8, 1080, 10.1038/sj.embor.7401082
Preti, 2010, The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae, Mol. Cell, 38, 614, 10.1016/j.molcel.2010.04.016
Ichikawa, 2015, Nucleosome organization and chromatin dynamics in telomeres, Biomol. Concepts, 6, 67, 10.1515/bmc-2014-0035
Ichikawa, 2014, Telomeric repeats act as nucleosome-disfavouring sequences in vivo, Nucleic Acids Res., 42, 1541, 10.1093/nar/gkt1006
Yarragudi, 2004, Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae, Mol. Cell. Biol., 24, 9152, 10.1128/MCB.24.20.9152-9164.2004
Badis, 2008, A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters, Mol. Cell, 32, 878, 10.1016/j.molcel.2008.11.020
Kubik, 2018, Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription, Mol. Cell, 71, 89, 10.1016/j.molcel.2018.05.030
Kaplan, 2009, The DNA-encoded nucleosome organization of a eukaryotic genome, Nature, 458, 362, 10.1038/nature07667
Ganapathi, 2011, Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast, Nucleic Acids Res., 39, 2032, 10.1093/nar/gkq1161
Tsankov, 2011, Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization, Genome Res., 21, 1851, 10.1101/gr.122267.111
Struhl, 2013, Determinants of nucleosome positioning, Nat. Struct. Mol. Biol., 20, 267, 10.1038/nsmb.2506
Van Bakel, H., Tsui, K., Gebbia, M., Mnaimneh, S., Hughes, T.R., and Nislow, C. (2013). A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet., 9.
Kubik, 2015, Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast, Mol. Cell, 60, 422, 10.1016/j.molcel.2015.10.002
Krietenstein, 2016, Genomic nucleosome organization reconstituted with pure proteins, Cell, 167, 709, 10.1016/j.cell.2016.09.045
Yan, 2018, Systematic study of nucleosome-displacing factors in budding yeast, Mol. Cell, 71, 294, 10.1016/j.molcel.2018.06.017
Bonetti, 2013, Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends, EMBO J., 32, 275, 10.1038/emboj.2012.327
Bi, 1999, UASrpg can function as a heterochromatin boundary element in yeast, Genes Dev., 13, 1089, 10.1101/gad.13.9.1089
Bi, 2004, Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures, Mol. Cell. Biol., 24, 2118, 10.1128/MCB.24.5.2118-2131.2004
Donze, 2001, RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae, EMBO J., 20, 520, 10.1093/emboj/20.3.520
Gartenberg, 2016, The nuts and bolts of transcriptionally silent chromatin in Saccharomyces cerevisiae, Genetics, 203, 1563, 10.1534/genetics.112.145243
Fourel, 2002, General regulatory factors (GRFs) as genome partitioners, J. Biol. Chem., 277, 41736, 10.1074/jbc.M202578200
Tommerup, 1994, Unusual chromatin in human telomeres, Mol. Cell. Biol., 14, 5777
Tardat, 2018, Telomere chromatin establishment and its maintenance during mammalian development, Chromosoma, 127, 3, 10.1007/s00412-017-0656-3
Cubiles, 2018, Epigenetic features of human telomeres, Nucleic Acids Res., 46, 2347, 10.1093/nar/gky006
Ernst, 2011, Mapping and analysis of chromatin state dynamics in nine human cell types, Nature, 473, 43, 10.1038/nature09906
Rosenfeld, J.A., Wang, Z., Schones, D.E., Zhao, K., DeSalle, R., and Zhang, M.Q. (2009). Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genom., 10.
Kubicek, 2010, Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres, Nat. Struct. Mol. Biol., 17, 1218, 10.1038/nsmb.1897
2011, Arabidopsis thaliana telomeres exhibit euchromatic features, Nucleic Acids Res., 39, 2007, 10.1093/nar/gkq1119
Ivessa, 2002, Saccharomyces Rrm3p, a 5’ to 3’ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA, Genes Dev., 16, 1383, 10.1101/gad.982902
Makovets, 2004, Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions, Mol. Cell. Biol., 24, 4019, 10.1128/MCB.24.9.4019-4031.2004
Miller, 2006, Semi-conservative DNA replication through telomeres requires Taz1, Nature, 440, 824, 10.1038/nature04638
Sfeir, 2009, Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication, Cell, 138, 90, 10.1016/j.cell.2009.06.021
Lopes, 2011, G-quadruplex-induced instability during leading-strand replication, EMBO J., 30, 4033, 10.1038/emboj.2011.316
Bah, 2011, Telomerase is required to protect chromosomes with vertebrate-type T2AG3 3’ ends in Saccharomyces cerevisiae, J. Biol. Chem., 286, 27132, 10.1074/jbc.M111.220186
Anand, 2012, Overcoming natural replication barriers: Differential helicase requirements, Nucleic Acids Res., 40, 1091, 10.1093/nar/gkr836
Lormand, 2013, DNA polymerase δ stalls on telomeric lagging strand templates independently from G-quadruplex formation, Nucleic Acids Res., 41, 10323, 10.1093/nar/gkt813
Geronimo, 2016, Getting it done at the ends: Pif1 family DNA helicases and telomeres, DNA Repair, 44, 151, 10.1016/j.dnarep.2016.05.021
Croteau, 2014, Human RecQ helicases in DNA repair, recombination, and replication, Annu. Rev. Biochem., 83, 519, 10.1146/annurev-biochem-060713-035428
Whitby, 2010, The FANCM family of DNA helicases/translocases, DNA Repair, 9, 224, 10.1016/j.dnarep.2009.12.012
Vannier, 2014, RTEL1: Functions of a disease-associated helicase, Trends Cell Biol., 24, 416, 10.1016/j.tcb.2014.01.004
Poole, 2016, SMARCAL1 and telomeres: Replicating the troublesome ends, Nucleus, 7, 270, 10.1080/19491034.2016.1179413
Niu, 2016, Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair, FEMS Yeast Res., 17, fow111, 10.1093/femsyr/fow111
Bianchi, 2007, Early replication of short telomeres in budding yeast, Cell, 128, 1051, 10.1016/j.cell.2007.01.041
Cooley, 2014, Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity, Cell Rep., 7, 53, 10.1016/j.celrep.2014.02.019
Hiraga, 2014, Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex, Genes Dev., 28, 372, 10.1101/gad.231258.113
Mattarocci, 2014, Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7, Cell Rep., 7, 62, 10.1016/j.celrep.2014.03.010
Hafner, 2018, Rif1 binding and control of chromosome-internal DNA replication origins is limited by telomere sequestration, Cell Rep., 23, 983, 10.1016/j.celrep.2018.03.113
Hafner, L., Shore, D., and Mattarocci, S. (2018). ChECing out Rif1 action in freely cycling cells. Curr. Genet., 1–6.
Hiraga, 2018, Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks, EMBO Rep., 19, e46222, 10.15252/embr.201846222
Arnoult, N., Schluth-Bolard, C., Letessier, A., Drascovic, I., Bouarich-Bourimi, R., Campisi, J., Kim, S., Boussouar, A., Ottaviani, A., and Magdinier, F. (2010). Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization. PLoS Genet., 6.
Azzalin, 2007, Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, Science, 318, 798, 10.1126/science.1147182
Schoeftner, 2008, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II, Nat. Cell Biol., 10, 228, 10.1038/ncb1685
Xu, 2010, Telomeric repeat-containing RNA structure in living cells, Proc. Natl. Acad. Sci. USA, 107, 14579, 10.1073/pnas.1001177107
Xu, 2008, G-quadruplex formation by human telomeric repeats-containing RNA in Na + solution, J. Am. Chem. Soc., 130, 11179, 10.1021/ja8031532
Martadinata, 2009, Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K + solution, J. Am. Chem. Soc., 131, 2570, 10.1021/ja806592z
Collie, 2010, A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex, Nucleic Acids Res., 38, 5569, 10.1093/nar/gkq259
Balk, 2013, Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence, Nat. Struct. Mol. Biol., 20, 1199, 10.1038/nsmb.2662
Aguilera, 2015, R loops: New modulators of genome dynamics and function, Nat. Rev. Genet., 16, 583, 10.1038/nrg3961
Gan, 2011, R-loop-mediated genomic instability is caused by impairment of replication fork progression, Genes Dev., 25, 2041, 10.1101/gad.17010011
Maicher, 2014, Breaking new ground: Digging into TERRA function, Biochim. Biophys. Acta, 1839, 387, 10.1016/j.bbagrm.2014.03.012
Arora, 2015, Telomere elongation chooses TERRA ALTernatives, RNA Biol., 12, 938, 10.1080/15476286.2015.1065374
Arora, 2014, RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells, Nat. Commun., 5, 5220, 10.1038/ncomms6220
Dilley, 2015, ALTernative telomere maintenance and cancer, Trends Cancer, 1, 145, 10.1016/j.trecan.2015.07.007
Cusanelli, 2013, Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres, Mol. Cell, 51, 780, 10.1016/j.molcel.2013.08.029
Moravec, 2016, TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe, EMBO Rep., 17, 999, 10.15252/embr.201541708
Graf, 2017, Telomere length determines TERRA and R-Loop regulation through the cell cycle, Cell, 170, 72, 10.1016/j.cell.2017.06.006
Deng, 2009, TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres, Mol. Cell, 35, 403, 10.1016/j.molcel.2009.06.025
Bah, 2012, The telomeric transcriptome: From fission yeast to mammals, Int. J. Biochem. Cell Biol., 44, 1055, 10.1016/j.biocel.2012.03.021
Rippe, 2015, TERRA and the state of the telomere, Nat. Struct. Mol. Biol., 22, 853, 10.1038/nsmb.3078
Luke, 2008, The Rat1p 5’ to 3’ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae, Mol. Cell, 32, 465, 10.1016/j.molcel.2008.10.019
Redon, 2010, The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase, Nucleic Acids Res., 38, 5797, 10.1093/nar/gkq296
Farnung, B.O., Brun, C.M., Arora, R., Lorenzi, L.E., and Azzalin, C.M. (2012). Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS ONE, 7.
Cusanelli, 2015, Telomeric repeat-containing RNA TERRA: A noncoding RNA connecting telomere biology to genome integrity, Front. Genet., 6, 143, 10.3389/fgene.2015.00143
Vrbsky, J., Akimcheva, S., Watson, J.M., Turner, T.L., Daxinger, L., Vyskot, B., Aufsatz, W., and Riha, K. (2010). siRNA–mediated methylation of Arabidopsis telomeres. PLoS Genet., 6.
Bah, 2012, The telomeric transcriptome of Schizosaccharomyces pombe, Nucleic Acids Res., 40, 2995, 10.1093/nar/gkr1153
Vu, 2014, Chromatin features of plant telomeric sequences at terminal vs. internal positions, Front. Plant Sci., 5, 593
Huang, 2014, Telomere regulation in pluripotent stem cells, Protein Cell, 5, 194, 10.1007/s13238-014-0028-1
Liu, 2017, Linking telomere regulation to stem cell pluripotency, Trends Genet., 33, 16, 10.1016/j.tig.2016.10.007
Bodnar, 1998, Extension of life-span by introduction of telomerase into normal human cells, Science, 279, 349, 10.1126/science.279.5349.349
Grossi, 2004, Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation, Genes Dev., 18, 992, 10.1101/gad.300004
Qi, 2000, The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein, Genes Dev., 14, 1777, 10.1101/gad.14.14.1777
Diede, 1999, Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta, Cell, 99, 723, 10.1016/S0092-8674(00)81670-0
Carson, 1985, CDC17: An essential gene that prevents telomere elongation in yeast, Cell, 42, 249, 10.1016/S0092-8674(85)80120-3
Adams, 1996, Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae, Mol. Cell. Biol., 16, 4614, 10.1128/MCB.16.9.4614
Dionne, 2000, The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis, Mol. Cell. Biol., 20, 786, 10.1128/MCB.20.3.786-796.2000
Parenteau, 2002, Differential processing of leading- and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease, Genetics, 162, 1583, 10.1093/genetics/162.4.1583
Casteel, 2009, A DNA polymerase alpha- primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells, J. Biol. Chem., 284, 5807, 10.1074/jbc.M807593200
Wang, 2012, Human CST has independent functions during telomere duplex replication and C-strand fill-in, Cell Rep., 2, 1096, 10.1016/j.celrep.2012.10.007
Chen, 2012, The human CST complex is a terminator of telomerase activity, Nature, 488, 540, 10.1038/nature11269
Price, 2010, Evolution of CST function in telomere maintenance, Cell Cycle, 9, 3157, 10.4161/cc.9.16.12547
Stewart, 2012, Human CST promotes telomere duplex replication and general replication restart after fork stalling, EMBO J., 31, 3537, 10.1038/emboj.2012.215
Wu, 2012, Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST, Cell, 150, 39, 10.1016/j.cell.2012.05.026
Goulian, 1990, The mechanism of action of an accessory protein for DNA polymerase alpha/primase, J. Biol. Chem., 265, 13231, 10.1016/S0021-9258(19)38289-4
Goulian, 1990, Purification and properties of an accessory protein for DNA polymerase alpha/primase, J. Biol. Chem., 265, 13221, 10.1016/S0021-9258(19)38288-2
Chandra, 2001, Cdc13 both positively and negatively regulates telomere replication, Genes Dev., 15, 404, 10.1101/gad.861001
Pennock, 2001, Cdc13 delivers separate complexes to the telomere for end protection and replication, Cell, 104, 387, 10.1016/S0092-8674(01)00226-4
Gopalakrishnan, 2017, Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication, Cell Cycle, 16, 1271, 10.1080/15384101.2017.1312235
Tseng, 2006, The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation, Nucleic Acids Res., 34, 6327, 10.1093/nar/gkl786
Shen, 2014, PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase, Nat. Commun., 5, 5312, 10.1038/ncomms6312
Hang, 2011, SUMOylation regulates telomere length homeostasis by targeting Cdc13, Nat. Struct. Mol. Biol., 18, 920, 10.1038/nsmb.2100
Greider, 2016, Regulating telomere length from the inside out: The replication fork model, Genes Dev., 30, 1483, 10.1101/gad.280578.116
Marcand, 1997, A protein-counting mechanism for telomere length regulation in yeast, Science, 275, 986, 10.1126/science.275.5302.986
Cesare, 2010, Alternative lengthening of telomeres: Models, mechanisms and implications, Nat. Rev. Genet., 11, 319, 10.1038/nrg2763
Bryan, 1995, Telomere elongation in immortal human cells without detectable telomerase activity, EMBO J., 14, 4240, 10.1002/j.1460-2075.1995.tb00098.x
Bryan, 1997, Telomere dynamics and telomerase activity in in vitro immortalised human cells, Eur. J. Cancer, 33, 767, 10.1016/S0959-8049(97)00065-8
Cerone, 2001, Telomere maintenance by telomerase and by recombination can coexist in human cells, Hum. Mol. Genet., 10, 1945, 10.1093/hmg/10.18.1945
Samassekou, 2013, Presence of alternative lengthening of telomeres associated circular extrachromosome telomere repeats in primary leukemia cells of chronic myeloid leukemia, J. Hematol. Oncol., 6, 26, 10.1186/1756-8722-6-26
Slatter, 2012, The alternative lengthening of telomeres pathway may operate in non-neoplastic human cells, J. Pathol., 226, 509, 10.1002/path.2981
Neumann, 2013, Alternative lengthening of telomeres in normal mammalian somatic cells, Genes Dev., 27, 18, 10.1101/gad.205062.112
Friml, 2008, Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants, Plant Mol. Biol., 66, 637, 10.1007/s11103-008-9295-7
Yu, 1990, In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs, Nature, 344, 126, 10.1038/344126a0
Singer, 1994, TLC1: Template RNA component of Saccharomyces cerevisiae telomerase, Science, 266, 404, 10.1126/science.7545955
McEachern, 1996, Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase, Genes Dev., 10, 1822, 10.1101/gad.10.14.1822
Teng, 1999, Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae, Mol. Cell. Biol., 19, 8083, 10.1128/MCB.19.12.8083
Le, 1999, RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase, Genetics, 152, 143, 10.1093/genetics/152.1.143
Chen, 2001, Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events, Mol. Cell. Biol., 21, 1819, 10.1128/MCB.21.5.1819-1827.2001
Huang, 2001, SGS1 is required for telomere elongation in the absence of telomerase, Curr. Biol., 11, 125, 10.1016/S0960-9822(01)00021-5
Cohen, 2001, Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase, Proc. Natl. Acad. Sci. USA, 98, 3174, 10.1073/pnas.061579598
Lydeard, 2007, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, 448, 820, 10.1038/nature06047
Teng, 2000, Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process, Mol. Cell, 6, 947, 10.1016/S1097-2765(05)00094-8
Johnson, 2001, The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase, EMBO J., 20, 905, 10.1093/emboj/20.4.905
Tsai, 2002, Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination, Mol. Cell. Biol., 22, 5679, 10.1128/MCB.22.16.5679-5687.2002
Maringele, 2004, Telomerase- and recombination-independent immortalization of budding yeast, Genes Dev., 18, 2663, 10.1101/gad.316504
Lee, 2008, Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination, J. Biol. Chem., 283, 29847, 10.1074/jbc.M804760200
Grandin, 2001, Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13, EMBO J., 20, 1173, 10.1093/emboj/20.5.1173
Murnane, 1994, Telomere dynamics in an immortal human cell line, EMBO J., 13, 4953, 10.1002/j.1460-2075.1994.tb06822.x
Cazes, 2004, Alternative lengthening of telomeres is characterized by high rates of telomeric exchange, Cancer Res., 64, 2324, 10.1158/0008-5472.CAN-03-4035
Cesare, 2004, Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops, Mol. Cell. Biol., 24, 9948, 10.1128/MCB.24.22.9948-9957.2004
Nabetani, 2009, Unusual telomeric DNAs in human telomerase-negative immortalized cells, Mol. Cell. Biol., 29, 703, 10.1128/MCB.00603-08
Yeager, 1999, Telomerase-negative immortalized human cells contain a novel type of Promyelocytic Leukemia (PML) body, Cancer Res., 59, 4175
Dilley, 2016, Break-induced telomere synthesis underlies alternative telomere maintenance, Nature, 539, 54, 10.1038/nature20099
Roumelioti, 2016, Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication, EMBO Rep., 17, 1731, 10.15252/embr.201643169
Min, J., Wright, W.E., and Shay, J.W. (2017). Alternative lengthening of telomeres mediated by mitotic DNA synthesis engages break-induced replication processes. Mol. Cell. Biol.
Sobinoff, 2017, BLM and SLX4 play opposing roles in recombination-dependent replication at human telomeres, EMBO J., 36, 2907, 10.15252/embj.201796889
Bournique, 2016, Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres, Cell Rep., 17, 1858, 10.1016/j.celrep.2016.10.048
Sobinoff, 2017, Alternative lengthening of telomeres: DNA repair pathways converge, Trends Genet., 33, 921, 10.1016/j.tig.2017.09.003
Heaphy, 2011, Altered telomeres in tumors with ATRX and DAXX mutations, Science, 333, 425, 10.1126/science.1207313
Lovejoy, C.A., Li, W., Reisenweber, S., Thongthip, S., Bruno, J., de Lange, T., De, S., Petrini, J.H.J., Sung, P.A., and Jasin, M. (2012). Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet., 8.
Schwartzentruber, 2012, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, Nature, 482, 226, 10.1038/nature10833
Haase, 2018, Mutant ATRX: Uncovering a new therapeutic target for glioma, Expert Opin. Ther. Targets, 22, 599, 10.1080/14728222.2018.1487953
Arnoult, 2014, Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1, Nat. Struct. Mol. Biol., 21, 167, 10.1038/nsmb.2754
Episkopou, 2014, Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin, Nucleic Acids Res., 42, 4391, 10.1093/nar/gku114
Kingston, 2009, Purification of proteins associated with specific genomic loci, Cell, 136, 175, 10.1016/j.cell.2008.11.045
Conomos, 2012, Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells, J. Cell Biol., 199, 893, 10.1083/jcb.201207189
Marzec, 2015, Nuclear-receptor-mediated telomere insertion leads to genome instability in ALT cancers, Cell, 160, 913, 10.1016/j.cell.2015.01.044
Conomos, 2014, NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination, Nat. Struct. Mol. Biol., 21, 760, 10.1038/nsmb.2877
Iglesias, 2011, Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast, EMBO Rep., 12, 587, 10.1038/embor.2011.73
Yu, 2014, Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase, Proc. Natl. Acad. Sci. USA, 111, 3377, 10.1073/pnas.1307415111
Wells, 1990, Telomere-related sequences at interstitial sites in the human genome, Genomics, 8, 699, 10.1016/0888-7543(90)90257-U
Azzalin, 2002, Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution, Hum. Genet., 110, 578, 10.1007/s00439-002-0730-6
Giulotto, 2005, Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates, Cytogenet. Genome Res., 108, 234, 10.1159/000080822
Nergadze, 2008, Telomeric repeats far from the ends: Mechanisms of origin and role in evolution, Cytogenet. Genome Res., 122, 219, 10.1159/000167807
He, 2013, Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species, Chromosom. Res., 21, 5, 10.1007/s10577-012-9332-x
2017, Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution, Mutat. Res. Mutat. Res., 773, 51, 10.1016/j.mrrev.2017.04.002
Weber, 1990, Characterization and organization of DNA sequences adjacent to the human telomere associated repeat (TTAGGG)n, Nucleic Acids Res., 18, 3353, 10.1093/nar/18.11.3353
Meyne, 1990, Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes, Chromosoma, 99, 3, 10.1007/BF01737283
Weber, 1991, Intrachromosomal location of the telomeric repeat (TTAGGG)n, Mamm. Genome, 1, 211, 10.1007/BF00352327
Cox, 1993, Comparison of plant telomere locations using a PCR-generated synthetic probe, Ann. Bot., 72, 239, 10.1006/anbo.1993.1104
Azzalin, 1997, Fluorescence in situ hybridization with a synthetic (T2AG3)n polynucleotide detects several intrachromosomal telomere-like repeats on human chromosomes, Cytogenet. Cell Genet., 78, 112, 10.1159/000134640
Mondello, 2000, Instability of interstitial telomeric sequences in the human genome, Genomics, 68, 111, 10.1006/geno.2000.6280
Azzalin, 2001, Human intrachromosomal telomeric-like repeats: Sequence organization and mechanisms of origin, Chromosoma, 110, 75, 10.1007/s004120100135
Uchida, 2002, Interstitial telomere-like repeats in the Arabidopsis thaliana genome, Genes Genet. Syst., 77, 63, 10.1266/ggs.77.63
Flint, 1997, Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains, Hum. Mol. Genet., 6, 1305, 10.1093/hmg/6.8.1305
Ambrosini, 2007, Human subtelomeric duplicon structure and organization, Genome Biol., 8, R151, 10.1186/gb-2007-8-7-r151
IJdo, 1991, Origin of human chromosome 2: An ancestral telomere-telomere fusion, Proc. Natl. Acad. Sci. USA, 88, 9051, 10.1073/pnas.88.20.9051
Fan, 2002, Genomic structure and evolution of the ancestral chromosome fusion site in 2q13-2q14.1 and paralogous regions on other human chromosomes, Genome Res., 12, 1651, 10.1101/gr.337602
Slijepcevic, 1998, Telomeres and mechanisms of Robertsonian fusion, Chromosoma, 107, 136, 10.1007/s004120050289
Capilla, 2015, On the origin of Robertsonian fusions in nature: Evidence of telomere shortening in wild house mice, J. Evol. Biol., 28, 241, 10.1111/jeb.12568
Rovatsos, 2011, Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents, Chromosom. Res., 19, 869, 10.1007/s10577-011-9242-3
Rovatsos, M., Kratochvíl, L., Altmanová, M., and Johnson Pokorná, M. (2015). Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE, 10.
Nergadze, 2007, Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution, Genome Biol., 8, R260, 10.1186/gb-2007-8-12-r260
Lin, 2008, Endings in the middle: Current knowledge of interstitial telomeric sequences, Mutat. Res., 658, 95, 10.1016/j.mrrev.2007.08.006
Nergadze, 2004, Insertion of telomeric repeats at intrachromosomal break sites during primate evolution, Genome Res., 14, 1704, 10.1101/gr.2778904
Simonet, 2011, The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats, Cell Res., 21, 1028, 10.1038/cr.2011.40
Wood, 2014, TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends, Nat. Commun., 5, 5467, 10.1038/ncomms6467
Jia, 2017, Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells, Nucleic Acids Res., 45, 1219, 10.1093/nar/gkw1170
Jia, 2018, The MLH1 ATPase domain is needed for suppressing aberrant formation of interstitial telomeric sequences, DNA Repair, 65, 20, 10.1016/j.dnarep.2018.03.002
Lim, 2003, Telomere variability in the monocotyledonous plant order Asparagales, Proc. Biol. Sci., 270, 1893, 10.1098/rspb.2003.2446
Souza, 2016, Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae), Genetica, 144, 157, 10.1007/s10709-016-9886-1
Lim, 2003, The signature of the Cestrum genome suggests an evolutionary response to the loss of (TTTAGGG)n telomeres, Chromosoma, 112, 164, 10.1007/s00412-003-0256-2
Fajkus, 2015, Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome, Plant J., 82, 644, 10.1111/tpj.12839
Dumas, 2016, Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): Possible implications in evolution and phylogeny, J. Zool. Syst. Evol. Res., 54, 226, 10.1111/jzs.12131
Mazzoleni, 2017, Distribution of interstitial telomeric sequences in Primates and the Pygmy tree shrew (Scandentia), Cytogenet. Genome Res., 151, 141, 10.1159/000467634
Alvarez, 1993, Chromosomal radiosensitivity at intrachromosomal telomeric sites, Genes. Chromosomes Cancer, 8, 8, 10.1002/gcc.2870080103
Bertoni, 1996, Intrachromosomal telomere-like DNA sequences in Chinese hamster, Mamm. Genome, 7, 853, 10.1007/s003359900250
Musio, 1996, Spontaneous and aphidicolin-sensitive fragile site 3cen co-localizes with the (TTAGGG)n telomeric sequence in Chinese hamster cells, Cytogenet. Genome Res., 75, 159, 10.1159/000134469
Slijepcevic, 1996, Spontaneous and radiation-induced chromosomal breakage at interstitial telomeric sites, Chromosoma, 104, 596, 10.1007/BF00352299
Camats, 2006, Genomic instability in rat: Breakpoints induced by ionising radiation and interstitial telomeric-like sequences, Mutat. Res., 595, 156, 10.1016/j.mrfmmm.2005.11.002
Schneider, 2013, Chromosomal evolution of neotropical cichlids: The role of repetitive DNA sequences in the organization and structure of karyotype, Rev. Fish Biol. Fish., 23, 201, 10.1007/s11160-012-9285-3
Barros, 2017, Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?, Gene, 608, 20, 10.1016/j.gene.2017.01.013
Glugoski, 2018, Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish, Gene, 650, 49, 10.1016/j.gene.2018.01.099
Rosato, 2018, Inter- and intraspecific hypervariability in interstitial telomeric-like repeats (TTTAGGG)n in Anacyclus (Asteraceae), Ann. Bot., 122, 387, 10.1093/aob/mcy079
Bosco, 2012, A TRF1-controlled common fragile site containing interstitial telomeric sequences, Chromosoma, 121, 465, 10.1007/s00412-012-0377-6
Bianchi, 2006, Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations, Mutat. Res., 612, 189, 10.1016/j.mrrev.2005.12.003
Bianchi, 2010, Relationship between heterochromatic interstitial telomeric sequences and chromosome damage induced by the radiomimetic compound streptonigrin in Chinese hamster ovary cells, Mutat. Res., 684, 90, 10.1016/j.mrfmmm.2009.12.005
2012, Chromosomal aberrations involving telomeres and interstitial telomeric sequences, Mutagenesis, 27, 1, 10.1093/mutage/ger052
Swier, 2012, Do Time, heterochromatin, NORs, or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon (cotton rats)?, J. Hered., 103, 493, 10.1093/jhered/ess029
Hastie, 1989, Human telomeres: Fusion and interstitial sites, Trends Genet., 5, 326, 10.1016/0168-9525(89)90137-6
Yen, 1996, A polymorphic interstitial telomere array near the center of mouse chromosome 8, Mamm. Genome, 7, 218, 10.1007/s003359900059
Samassekou, 2011, Polymorphism in a human chromosome-specific interstitial telomere-like sequence at 22q11.2, Cytogenet. Genome Res., 134, 174, 10.1159/000328862
Pluta, 1989, Recombination occurs during telomere formation in yeast, Nature, 337, 429, 10.1038/337429a0
Ashley, 1993, A “hot spot” of recombination coincides with an interstitial telomeric sequence in the Armenian hamster, Cytogenet. Cell Genet., 62, 169, 10.1159/000133464
Goyanes, 1995, High frequency of mutagen-induced chromatid exchanges at interstitial telomere-like DNA sequence blocks of Chinese hamster cells, Chromosome Res., 3, 281, 10.1007/BF00713065
Day, 1998, Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells, Carcinogenesis, 19, 259, 10.1093/carcin/19.2.259
Wood, 2015, A beginning of the end: New insights into the functional organization of telomeres, Nucleus, 6, 172, 10.1080/19491034.2015.1048407
Kilburn, 2001, Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability, Mol. Cell. Biol., 21, 126, 10.1128/MCB.21.1.126-135.2001
Aksenova, 2013, Genome rearrangements caused by interstitial telomeric sequences in yeast, Proc. Natl. Acad. Sci. USA, 110, 19866, 10.1073/pnas.1319313110
Aksenova, 2015, Expansion of Interstitial Telomeric Sequences in Yeast, Cell Rep., 13, 1545, 10.1016/j.celrep.2015.10.023
Park, 1992, The presence of interstitial telomeric sequences in constitutional chromosome abnormalities, Am. J. Hum. Genet., 50, 914
Rossi, 1993, Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences, J. Med. Genet., 30, 926, 10.1136/jmg.30.11.926
Devriendt, 1997, Trisomy 15 rescue with jumping translocation of distal 15q in Prader-Willi syndrome, J. Med. Genet., 34, 395, 10.1136/jmg.34.5.395
Vermeesch, 1997, Interstitial telomeric sequences at the junction site of a jumping translocation, Hum. Genet., 99, 735, 10.1007/s004390050440
Depetris, 2007, Recurrent rearrangements in the proximal 15q11-q14 region: A new breakpoint cluster specific to unbalanced translocations, Eur. J. Hum. Genet., 15, 432, 10.1038/sj.ejhg.5201775
Fortin, 2009, Frequency of chromosome healing and interstitial telomeres in 40 cases of constitutional abnormalities, Cytogenet. Genome Res., 125, 176, 10.1159/000230002
Lefort, 2001, Cytogenetic and molecular study of a jumping translocation in a baby with Dandy-Walker malformation, J. Med. Genet., 38, 67, 10.1136/jmg.38.1.67
Hatakeyama, 1998, Shortened telomeres involved in a case with a jumping translocation at 1q21, Blood, 91, 1514, 10.1182/blood.V91.5.1514
Cuthbert, 1999, Jumping translocation at 11q23 with MLL gene rearrangement and interstitial telomeric sequences, Genes Chromosomes Cancer, 24, 295, 10.1002/(SICI)1098-2264(199904)24:4<295::AID-GCC1>3.0.CO;2-8
Brizard, 2000, Interstitial telomere repeats in translocations of hematopoietic disorders, Leukemia, 14, 1630, 10.1038/sj.leu.2401876
Boutouil, 1996, Fragile site and interstitial telomere repeat sequences at the fusion point of a de novo (Y;13) translocation, Hum. Genet., 98, 323, 10.1007/s004390050216
Receveur, 2015, Involvement of interstitial telomeric sequences in two new cases of mosaicism for autosomal structural rearrangements, Am. J. Med. Genet. A, 167A, 428
Marlet, 2017, Prenatal diagnosis of trisomy 2p due to terminal 2p duplication including interstitial telomeric sequences, Cytogenet. Genome Res., 153, 117, 10.1159/000485392
Schleiermacher, 2005, Stepwise occurrence of a complex unbalanced translocation in neuroblastoma leading to insertion of a telomere sequence and late chromosome 17q gain, Oncogene, 24, 3377, 10.1038/sj.onc.1208486
Bodvarsdottir, 2012, Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines, Mutat. Res. Mol. Mech. Mutagen., 729, 90, 10.1016/j.mrfmmm.2011.10.002
Goto, G.H., Zencir, S., Hirano, Y., Ogi, H., Ivessa, A., and Sugimoto, K. (2015). Binding of multiple Rap1 proteins stimulates chromosome breakage induction during DNA replication. PLoS Genet., 11.
Larcher, M.V., Pasquier, E., MacDonald, R.S., and Wellinger, R.J. (2016). Ku Binding on telomeres occurs at sites distal from the physical chromosome ends. PLoS Genet., 12.
Yang, 2011, Human telomeric proteins occupy selective interstitial sites, Cell Res., 21, 1013, 10.1038/cr.2011.39
Ye, 2010, TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage, Cell, 142, 230, 10.1016/j.cell.2010.05.032
Depetris, 2002, A human interstitial telomere associates in vivo with specific TRF2 and TIN2 proteins, Eur. J. Hum. Genet., 10, 107, 10.1038/sj.ejhg.5200775
Krutilina, 2001, A negative regulator of telomere-length protein TRF1 is associated with interstitial (TTAGGG)n blocks in immortal Chinese hamster ovary cells, Biochem. Biophys. Res. Commun., 280, 471, 10.1006/bbrc.2000.4143
Krutilina, 2003, Protection of internal (TTAGGG)n repeats in Chinese hamster cells by telomeric protein TRF1, Oncogene, 22, 6690, 10.1038/sj.onc.1206745
Gu, 2017, Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis, Oncogene, 36, 1939, 10.1038/onc.2016.405
Ilic, 2017, Ubiquitin C-terminal hydrolase isozyme L1 is associated with shelterin complex at interstitial telomeric sites, Epigenetics Chromatin, 10, 54, 10.1186/s13072-017-0160-2
Robin, 2014, Telomere position effect: Regulation of gene expression with progressive telomere shortening over long distances, Genes Dev., 28, 2464, 10.1101/gad.251041.114
Robin, 2015, SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy, Genome Res., 25, 1781, 10.1101/gr.190660.115
Grunstein, 1997, Molecular model for telomeric heterochromatin in yeast, Curr. Opin. Cell Biol., 9, 383, 10.1016/S0955-0674(97)80011-7
Kim, W., Ludlow, A.T., Min, J., Robin, J.D., Stadler, G., Mender, I., Lai, T.-P., Zhang, N., Wright, W.E., and Shay, J.W. (2016). Regulation of the human telomerase gene TERT by telomere position effect—over long distances (TPE-OLD): Implications for aging and cancer. PLoS Biol., 14.
Mukherjee, A.K., Sharma, S., Sengupta, S., Saha, D., Kumar, P., Hussain, T., Srivastava, V., Roy, S.D., Shay, J.W., and Chowdhury, S. (2018). Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends. PLoS Genet., 14.
Berthiau, 2006, Subtelomeric proteins negatively regulate telomere elongation in budding yeast, EMBO J., 25, 846, 10.1038/sj.emboj.7600975
Huettel, 2007, RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants, Biochim. Biophys. Acta Gene Struct. Expr., 1769, 358, 10.1016/j.bbaexp.2007.03.001
Matzke, 2014, RNA-directed DNA methylation: An epigenetic pathway of increasing complexity, Nat. Rev. Genet., 15, 394, 10.1038/nrg3683
Marcomini, 2018, Asymmetric processing of DNA ends at a double-strand break leads to unconstrained dynamics and ectopic translocation, Cell Rep., 24, 2614, 10.1016/j.celrep.2018.07.102
Moore, 2018, Genetic control of genomic alterations induced in yeast by interstitial telomeric sequences, Genetics, 209, 425, 10.1534/genetics.118.300950
Adam, 1991, Telomeric location of Giardia rDNA genes, Mol. Cell. Biol., 11, 3326
Yu, 1991, Developmentally programmed healing of chromosomes by telomerase in Tetrahymena, Cell, 67, 823, 10.1016/0092-8674(91)90077-C
Butler, 1992, Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora, Genetics, 131, 581, 10.1093/genetics/131.3.581
Salvadori, 1995, Colocalization of (TTAGGG)n telomeric sequences and ribosomal genes in Atlantic eels, Chromosom. Res., 3, 54, 10.1007/BF00711162
1996, Localization of the repetitive telomeric sequence (TTAGGG) n in four salmonid species, Genome, 39, 1035, 10.1139/g96-129
Copenhaver, 1996, RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4, Plant J., 9, 259, 10.1046/j.1365-313X.1996.09020259.x
Liu, 1999, Telomeric (TTAGGG)n sequences are associated with nucleolus organizer regions (NORs) in the wood lemming, Chromosom. Res., 7, 235, 10.1023/A:1009255517764
Stimpson, K.M., Sullivan, L.L., Kuo, M.E., and Sullivan, B.A. (2014). Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS ONE, 9.
Villasante, 2007, Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome, Proc. Natl. Acad. Sci. USA, 104, 10542, 10.1073/pnas.0703808104
Mirkin, 2007, Replication fork stalling at natural impediments, Microbiol. Mol. Biol. Rev., 71, 13, 10.1128/MMBR.00030-06
Yu, 1999, Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae, Mol. Cell. Biol., 19, 5279, 10.1128/MCB.19.8.5279
Morse, 2000, RAP, RAP, open up! New wrinkles for RAP1 in yeast, Trends Genet., 16, 51, 10.1016/S0168-9525(99)01936-8
Xie, 2019, DNA fragility in the parallel evolution of pelvic reduction in stickleback fish, Science, 363, 81, 10.1126/science.aan1425
Labib, 2007, Replication fork barriers: Pausing for a break or stalling for time?, EMBO Rep., 8, 346, 10.1038/sj.embor.7400940
Hodgson, 2007, Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase, Mol. Biol. Cell, 18, 3894, 10.1091/mbc.e07-05-0500
Leman, 2012, Timeless preserves telomere length by promoting efficient DNA replication through human telomeres, Cell Cycle, 11, 2337, 10.4161/cc.20810
Gadaleta, M.C., Das, M.M., Tanizawa, H., Chang, Y.-T., Noma, K., Nakamura, T.M., and Noguchi, E. (2016). Swi1Timeless prevents repeat instability at fission yeast telomeres. PLoS Genet., 12.
Mazzoccoli, 2012, Altered expression of the clock gene machinery in kidney cancer patients, Biomed. Pharmacother., 66, 175, 10.1016/j.biopha.2011.11.007
Mao, Y., Fu, A., Leaderer, D., Zheng, T., Chen, K., and Zhu, Y. (2013). Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses. BMC Cancer, 13.
Relles, 2013, Circadian gene expression and clinicopathologic correlates in pancreatic cancer, J. Gastrointest. Surg., 17, 443, 10.1007/s11605-012-2112-2
Baldeyron, 2015, TIPIN depletion leads to apoptosis in breast cancer cells, Mol. Oncol., 9, 1580, 10.1016/j.molonc.2015.04.010
Chi, 2017, TIMELESS contributes to the progression of breast cancer through activation of MYC, Breast Cancer Res., 19, 53, 10.1186/s13058-017-0838-1
Zhang, 2017, Aberrant TIMELESS expression is associated with poor clinical survival and lymph node metastasis in early-stage cervical carcinoma, Int. J. Oncol., 50, 173, 10.3892/ijo.2016.3784
Parenteau, 1999, Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27, Mol. Cell. Biol., 19, 4143, 10.1128/MCB.19.6.4143
Saharia, 2008, Flap endonuclease 1 contributes to telomere stability, Curr. Biol., 18, 496, 10.1016/j.cub.2008.02.071
Moser, 2009, Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres, EMBO J., 28, 810, 10.1038/emboj.2009.31
Gatbonton, T., Imbesi, M., Nelson, M., Akey, J.M., Ruderfer, D.M., Kruglyak, L., Simon, J.A., and Bedalov, A. (2006). Telomere length as a quantitative trait: Genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet., 2.
Fallet, 2014, Length-dependent processing of telomeres in the absence of telomerase, Nucleic Acids Res., 42, 3648, 10.1093/nar/gkt1328
Johnson, 1992, Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome, Mol. Cell. Biol., 12, 3807
Luke-Glaser, S., and Luke, B. (2012). The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast. PLoS ONE, 7.
Donnianni, 2014, Template switching during break-induced replication is promoted by the mph1 helicase in Saccharomyces cerevisiae, Genetics, 196, 1017, 10.1534/genetics.114.162297
Motegi, 2008, Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks, Proc. Natl. Acad. Sci. USA, 105, 12411, 10.1073/pnas.0805685105
Unk, 2010, Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance, DNA Repair, 9, 257, 10.1016/j.dnarep.2009.12.013
Vannier, 2013, RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication, Science, 342, 239, 10.1126/science.1241779
Vannier, 2012, RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity, Cell, 149, 795, 10.1016/j.cell.2012.03.030
Ballew, B.J., Joseph, V., De, S., Sarek, G., Vannier, J.-B., Stracker, T., Schrader, K.A., Small, T.N., O’Reilly, R., and Manschreck, C. (2013). A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet., 9.
Deng, 2013, Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome, Proc. Natl. Acad. Sci. USA, 110, E3408, 10.1073/pnas.1300600110
Pan, 2017, FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres, Proc. Natl. Acad. Sci. USA, 114, E5940, 10.1073/pnas.1708065114