Asymptotics for Some Combinatorial Characteristics of the Convex Hull of a Poisson Point Process in the Clifford Torus

Discrete & Computational Geometry - Tập 49 Số 2 - Trang 200-220 - 2013
Magazinov, Alexander1
1Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russian Federation

Tóm tắt

Let $$\mathcal P _\lambda $$ be a homogeneous Poisson point process of rate $$\lambda $$ in the Clifford torus $$T^2\subset \mathbb E ^4$$ . Let $$(f_0, f_1, f_2, f_3)$$ be the $$f$$ -vector of conv $$\,\mathcal P _\lambda $$ and let $$\bar{v}$$ be the mean valence of a vertex of the convex hull. Asymptotic expressions for $$\mathsf E \, f_1$$ , $$\mathsf E \, f_2$$ , $$\mathsf E \, f_3$$ and $$\mathsf E \, \bar{v}$$ as $$\lambda \rightarrow \infty $$ are proved in this paper.

Tài liệu tham khảo

citation_title=Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, vol. 24; citation_publication_date=2002; citation_id=CR1; citation_author=VM Buchstaber; citation_author=TE Panov; citation_publisher=American Mathematical Society

citation_title=Spatial Point Processes. Models, Simulation and Statistical Inference; citation_publication_date=1999; citation_id=CR2; citation_author=T Dam; citation_author=JB Sørensen; citation_author=MH Thomsen; citation_publisher=Aalborg University

Dolbilin, N., Tanemura, M.: Voronoi tilings for the Clifford torus in a 3-sphere. In: Voronoi’s Impact on Modern Science, Book 4, vol. 1, pp. 210–219. Institute of Mathematics, Kyiv (2008)

citation_title=The Theory of Functions of a Real Variable; citation_publication_date=1946; citation_id=CR4; citation_author=L Graves; citation_publisher=McGraw-Hill

citation_journal_title=Zeitschrift für Wahrscheinlichskeitstheorie und Verwandte Gebiete; citation_title=Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen; citation_author=J Mecke; citation_volume=9; citation_publication_date=1967; citation_pages=36-58; citation_doi=10.1007/BF00535466; citation_id=CR5

citation_journal_title=Philips Res. Rep.; citation_title=Interface area, edge length, and number of vertices in crystal aggregates with random nucleation; citation_author=JL Meijering; citation_volume=8; citation_publication_date=1953; citation_pages=270-290; citation_id=CR6

citation_title=Packing and Covering; citation_publication_date=2008; citation_id=CR7; citation_author=CA Rogers; citation_publisher=Cambridge University Press

Weil, W., Wieacker, J.A.: Stochastic geometry. In: Handbook of Convex Geometry, vol. B, pp. 1391–1498. North-Holland, Amsterdam (1993)