Tính chu kỳ tiệm cận của các dòng tái diễn trong mạng vô hạn

Mathematische Zeitschrift - Tập 263 - Trang 69-87 - 2008
Britta Dorn1, Vera Keicher1, Eszter Sikolya2
1Mathematisches Institut, Universität Tübingen, Tübingen, Germany
2Department of Applied Analysis, Eötvös Loránd University, Budapest, Hungary

Tóm tắt

Chúng tôi xem xét một quá trình vận chuyển trên một mạng vô hạn và, sử dụng nhóm bán dòng tương ứng như được mô tả trong Dorn (Semigroup Forum 76:341–356, 2008), điều tra hành vi dài hạn của nó. Bằng cách kết hợp các phương pháp từ phân tích hàm, lý thuyết đồ thị và xác suất học, chúng tôi có khả năng mô tả các mạng mà nhóm bán dòng hội tụ mạnh mẽ về một nhóm chu kỳ.

Từ khóa

#mạng vô hạn #nhóm bán dòng #hội tụ mạnh mẽ #phân tích hàm #lý thuyết đồ thị #xác suất học

Tài liệu tham khảo

Ali Mehmeti, F., Below, J.V., Nicaise, S. (eds.): PDE’s on Multistructures. Marcel Dekker, NY, USA (2001) Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces. Academic Press, Dublin (1978) Axmann, D.: Struktur- und Ergodentheorie irreduzibler Operatoren auf Banachverbänden. PhD Thesis, Tübingen, (1980) von Below J.: Classical solvability of linear parabolic equations on networks. J. Diff. Equ. 72, 316–337 (1988) von Below J.: Kirchhoff laws and diffusion on networks. Linear Algebra Appl. 121, 692–697 (1989) Bollobás B.: Modern Graph Theory. Springer-Verlag, Berlin (1998) Brémaud P., Chains M.: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, Berlin (1999) Dáger R., Zuazua E.: Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Mathématiques and Applications, vol. 50. Springer, Berlin (2000) Davies E.B.: Triviality of the peripheral point spectrum. J. Evol. Equ. 5, 407–415 (2005) Diestel R.: Graph Theory, Graduate Texts in Math., vol. 173. Springer, Berlin (1997) Doob J.L.: Stochastic Processes. Wiley, London (1953) Dorn B.: Semigroups for flows in infinite networks. Semigroup Forum 76, 341–356 (2008) Godsil, Ch.D., Royle, G.: Algebraic graph theory. In: Graduate Texts in Mathematics, vol. 207. Springer, Berlin (2001) Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Graduate Texts in Math., vol. 194. Springer, Berlin (2000) Engel K.-J., Nagel R.: A Short Course on Operator Semigroups, Universitext. Springer, Berlin (2006) Foster F.G.: On the stochastic matrices associated with certain queuing processes. Ann. Math. Stat. 24, 355–360 (1953) Fayolle G., Malyshev V.A., Menshikov M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995) Keicher V.: On the peripheral spectrum of bounded positive semigroups on atomic Banach lattices. Arch. Math. 87, 359–367 (2006) Keicher, V.: Almost periodicity of stochastic operators on \({\ell^1(\mathbb {N})}\) (2008, preprint) Kemeny J.G., Snell J.L., Knapp A.W.: Denumerable Markov Chains. Springer, Berlin (1976) Kingsman J.F.C.: The ergodic behaviour of random walks. Biometrika 48, 391–396 (1961) Komornik J.: Asymptotic periodicity of the iterates of weakly constrictive Markov operators. Tohoku Math. J. 38, 15–27 (1986) Kramar M., Sikolya E.: Spectral properties and asymptotic periodicity of flows in networks. Math. Z. 249, 139–162 (2005) Krengel U.: Ergodic Theory. Cambridge University Press, Cambridge (1985) Lasota A., Li T.Y., Yorke J.A.: Asymptotic periodicity of the iterates of Markov operators. Trans. Am. Math. Soc. 286, 751–764 (1984) Lotz H.: Uniform ergodic theorems for Markov operators on C(X). Math. Z. 178(2), 145–156 (1981) Matrai T., Sikolya E.: Asymptotic behavior of flows in networks. Forum Math. 19, 429–461 (2007) Minc H.: Nonnegative Matrices. Wiley, London (1988) Nagel, R. (ed.): One-parameter Semigroups of Positive Operators, Lect. Notes Math., vol. 1184. Springer, Berlin (1986) Nicaise S.: Spectre des réseaux topologiques finis. Bull. Sci. Math. II. Sér. 111, 401–413 (1987) Räbiger F.: Attractors and asymptotic periodicity of positive operators on Banach lattices. Forum Math. 7, 665–683 (1995) Radl A.: Transport processes in networks with scattering ramification nodes. JAFA 3(4), 461–483 (2008) Schaefer H.: Banach Lattices and Positive Operators. Springer, Berlin (1974) Seneta E.: Non-negative Matrices and Markov Chains. Springer, Berlin (1973) S̆idak Z.: Eigenvalues of operators in l p -spaces in denumerable Markov chains. Czechoslovak Math. J. 14, 438–443 (1964) Sikolya E.: Flows in networks with dynamic ramification nodes. J. Evol. Equ. 5, 441–463 (2005) Villarreal C.E.: Ergodic decomposition of Markov chains. Linear Algebra Appl. 283, 61–73 (1998)