Asymptotic convergence of spectral inverse iterations for stochastic eigenvalue problems

Harri Hakula1, Mikael Laaksonen1
1Department of Mathematics and Systems Analysis, Aalto University, Espoo, Finland

Tóm tắt

We consider and analyze applying a spectral inverse iteration algorithm and its subspace iteration variant for computing eigenpairs of an elliptic operator with random coefficients. With these iterative algorithms the solution is sought from a finite dimensional space formed as the tensor product of the approximation space for the underlying stochastic function space, and the approximation space for the underlying spatial function space. Sparse polynomial approximation is employed to obtain the first one, while classical finite elements are employed to obtain the latter. An error analysis is presented for the asymptotic convergence of the spectral inverse iteration to the smallest eigenvalue and the associated eigenvector of the problem. A series of detailed numerical experiments supports the conclusions of this analysis.

Từ khóa


Tài liệu tham khảo

Andreev, R., Schwab, C.: Sparse tensor approximation of parametric eigenvalue problems. In: Lecture notes in computational science and engineering, vol. 83, pp. 203–241. Springer, Berlin (2012)

Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. Elsevier Science Publishers B.V., North-Holland (1991)

Bieri, M.: A sparse composite collocation finite element method for elliptic SPDEs. SIAM J. Numer. Anal. 49(6), 2277–2301 (2011)

Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009)

Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic spdes. Tech. Rep. 2009-07, Seminar for Applied Mathematics, ETH Zürich, Switzerland. https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2009/2009-07.pdf (2009)

Bieri, M., Schwab, C.: Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198, 1149–1170 (2009)

Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Dover Publications, Inc., Mineola (2003)

Gunawan, H., Neswan, O., Setya-Budhi, W.: A fromula for angles between subspaces of inner product spaces. Contrib. Algebra Geom. 46(2), 311–320 (2005)

Hakula, H., Kaarnioja, V., Laaksonen, M.: Approximate methods for stochastic eigenvalue problems. Appl. Math. Comput. 267(C), 664–681 (2015). https://doi.org/10.1016/j.amc.2014.12.112

Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)

Kantorovich, L., Akilov, G.: Functional Analysis in Normed Spaces. Pergamon Press, New York (1964)

Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1997)

Kriegl, A., Michor, P., Rainer, A.: Denjoy-carleman differentiable perturbation of polynomials and unbounded operators. Integr. Equ. Oper. Theory 71, 407–416 (2011)

Meidani, H., Ghanem, R.: Spectral power iterations for the random eigenvalue problem. AIAA J. 52, 912–925 (2014)

Powell, C.E., Elman, H.C.: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29(2), 350–375 (2008)

Soize, C., Ghanem, R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26, 395–410 (2004)

Sousedík, B., Elman, H.C.: Inverse subspace iteration for spectral stochastic finite element methods. SIAM/ASA J. Uncertain. Quantif. 4, 163–189 (2016)

Verhoosel, C.V., Gutiérrez, M.A., Hulshoff, S.J.: Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems. Int. J. Numer. Methods Eng. 68, 401–424 (2006)

Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)