Asymptotic convergence of spectral inverse iterations for stochastic eigenvalue problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andreev, R., Schwab, C.: Sparse tensor approximation of parametric eigenvalue problems. In: Lecture notes in computational science and engineering, vol. 83, pp. 203–241. Springer, Berlin (2012)
Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)
Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. Elsevier Science Publishers B.V., North-Holland (1991)
Bieri, M.: A sparse composite collocation finite element method for elliptic SPDEs. SIAM J. Numer. Anal. 49(6), 2277–2301 (2011)
Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009)
Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic spdes. Tech. Rep. 2009-07, Seminar for Applied Mathematics, ETH Zürich, Switzerland. https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2009/2009-07.pdf (2009)
Bieri, M., Schwab, C.: Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198, 1149–1170 (2009)
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)
Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Dover Publications, Inc., Mineola (2003)
Gunawan, H., Neswan, O., Setya-Budhi, W.: A fromula for angles between subspaces of inner product spaces. Contrib. Algebra Geom. 46(2), 311–320 (2005)
Hakula, H., Kaarnioja, V., Laaksonen, M.: Approximate methods for stochastic eigenvalue problems. Appl. Math. Comput. 267(C), 664–681 (2015). https://doi.org/10.1016/j.amc.2014.12.112
Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)
Kantorovich, L., Akilov, G.: Functional Analysis in Normed Spaces. Pergamon Press, New York (1964)
Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1997)
Kriegl, A., Michor, P., Rainer, A.: Denjoy-carleman differentiable perturbation of polynomials and unbounded operators. Integr. Equ. Oper. Theory 71, 407–416 (2011)
Meidani, H., Ghanem, R.: Spectral power iterations for the random eigenvalue problem. AIAA J. 52, 912–925 (2014)
Powell, C.E., Elman, H.C.: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29(2), 350–375 (2008)
Soize, C., Ghanem, R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26, 395–410 (2004)
Sousedík, B., Elman, H.C.: Inverse subspace iteration for spectral stochastic finite element methods. SIAM/ASA J. Uncertain. Quantif. 4, 163–189 (2016)
Verhoosel, C.V., Gutiérrez, M.A., Hulshoff, S.J.: Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems. Int. J. Numer. Methods Eng. 68, 401–424 (2006)
Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)