Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy

Communications on Pure and Applied Mathematics - Tập 60 Số 11 - Trang 1559-1622 - 2007
Stefano Bianchini1, Bernard Hanouzet2, Roberto Natalini3
1Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2–4, 34014 Trieste Italy
2Université Bordeaux 1, Institut de Mathématiques, UMR 5466 CNRS, 351, cours de la Libération, 33405 Talence cedex, France
3Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “M. Picone”, Viale del Policlinico 137, I‐00161 Roma, Italy

Tóm tắt

Abstract

We study the asymptotic time behavior of global smooth solutions to general entropy, dissipative, hyperbolic systems of balance laws in m space dimensions, under the Shizuta‐Kawashima condition. We show that these solutions approach a constant equilibrium state in the Lp‐norm at a rate O(t− (m/2)(1 − 1/p)) as t → ∞ for p ∈ [min{m, 2}, ∞]. Moreover, we can show that we can approximate, with a faster order of convergence, the conservative part of the solution in terms of the linearized hyperbolic operator for m ≥ 2, and by a parabolic equation, in the spirit of Chapman‐Enskog expansion in every space dimension. The main tool is given by a detailed analysis of the Green function for the linearized problem. © 2007 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.1137/S0036142998343075

Boillat G., 1974, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les syste èemes hyperboliques, C R Acad Sci Paris Sér A, 278, 909

10.1023/A:1004525427365

Bressan A., 2003, An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend Sem Mat Univ Padova, 110, 103

10.1002/cpa.3160470602

10.1007/BF02104510

10.1090/S0002-9947-06-04028-1

10.1007/978-3-662-22019-1

10.1073/pnas.68.8.1686

Godunov S. K., 1961, An interesting class of quasi‐linear systems, Dokl Akad Nauk SSSR, 139, 521

10.1016/S0764-4442(00)00129-4

10.1007/s00205-003-0257-6

10.1016/j.jde.2004.03.034

10.1007/BF02099268

Huynh P.Étude théorique et numérique de modèles de Kerr. Doctoral dissertation Université Bordeaux I 1999.

10.1002/cpa.3160480303

10.1007/978-3-642-66282-9

10.1017/S0308210500018308

Liu H., 2001, Long‐time diffusive behavior of solutions to a hyperbolic relaxation system, Asymptot Anal, 25, 21

10.1007/BF01210707

Liu T.‐P., 1997, Large time behavior of solutions for general quasilinear hyperbolic‐parabolic systems of conservation laws, Mem Amer Math Soc, 125

10.1007/978-1-4612-1116-7

10.1016/S0022-0396(03)00026-3

Mascia C.;Natalini R.On relaxation hyperbolic systems violating the Shizuta‐Kawashima condition. IAC Report 2007.

10.1007/s00205-003-0258-5

10.1007/978-1-4612-2210-1

Natalini R., 1999, Analysis of systems of conservation laws (Aachen, 1997), 128

Nishida T., 1978, Nonlinear hyperbolic equations and related topics in fluid dynamics

10.1016/j.na.2005.01.025

Ruggeri T., 2005, The entropy principle: from continuum mechanics to hyperbolic systems of balance laws, Boll Unione Mat Ital Sez B Artic Ric Mat (8), 8, 1

Ruggeri T., 2004, Stability of constant equilibrium state for dissipative balance laws system with a convex entropy, Quart Appl Math, 62, 163, 10.1090/qam/2032577

10.14492/hokmj/1381757663

10.1081/PDE-120020497

Taylor M. E., 1997, Partial differential equations. III

Whitham G. B., 1974, Linear and nonlinear waves

10.1007/978-1-4612-0193-9_4

10.1007/s00205-003-0304-3

10.1007/s002050050188