Asymmetrical two-dimensional electron gas in superlattices consisting of insulating GdTiO3 and BaTiO3

Thin Solid Films - Tập 645 - Trang 27-31 - 2018
Xue-Jing Zhang1, Bang-Gui Liu1,2
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Tài liệu tham khảo

Ohtomo, 2004, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, 427, 423, 10.1038/nature02308 Thiel, 2006, Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science, 313, 1942, 10.1126/science.1131091 Brinkman, 2007, Magnetic effects at the interface between non-magnetic oxides, Nat. Mater., 6, 493, 10.1038/nmat1931 Reynen, 2007, Superconducting interfaces between insulating oxides, Science, 317, 1196, 10.1126/science.1146006 2016 Bjaalie, 2015, Determination of the Mott-Hubbard gap in GdTiO3, Phys. Rev. B, 92, 085111, 10.1103/PhysRevB.92.085111 Komarek, 2007, Magnetoelastic coupling in RTiO3 (R=La, Nd, Sm, Gd, Y) investigated with diffraction techniques and thermal expansion measurements, Phys. Rev. B, 75, 224402, 10.1103/PhysRevB.75.224402 Zhou, 2005, Localized or itinerant TiO3 electrons in RTiO3 perovskites, J. Phys.: Condens. Matter, 17, 7395 Turner, 1980, Ferrimagnetism in the rare earth titanium (lll) oxides, RTiO3; R=Gd, Tb, Dy, Ho, Er, Tm, J. Solid State Chem., 34, 207, 10.1016/0022-4596(80)90223-6 Moetakef, 2015, Metal-insulator transitions in epitaxial Gd1−xSrxTiO3 thin films grown using hybrid molecular beam epitaxy, Thin Solid Films, 583, 129, 10.1016/j.tsf.2015.03.065 Yang, 2014, Strain driven sequential magnetic transitions in strained GdTiO3 on compressive substrates: a first-principles study, J. Phys.: Condens. Matter, 26, 476001 Seo, 2007, Optical study of the free-carrier response of LaTiO3/SrTiO3 superlattices, Phys. Rev. Lett, 99, 266801, 10.1103/PhysRevLett.99.266801 Kim, 2010, Nonlinear hall effect and multichannel conduction in LaTiO3/SrTiO3 superlattices, Phys. Rev. B, 82, 201407(R), 10.1103/PhysRevB.82.201407 Moetakef, 2011, Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces, Appl. Phys. Lett, 99, 232116, 10.1063/1.3669402 Nemsak, 2016, Energetic, spatial, and momentum character of the electronic structure at a buried interface: the two-dimensional electron gas between two metal oxides, Phys. Rev. B, 93, 245103, 10.1103/PhysRevB.93.245103 Ishida, 2008, Origin of metallicity of LaTiO3/SrTiO3 heterostructures, Phys. Rev. B, 77, 115350, 10.1103/PhysRevB.77.115350 Cooper, 2012, Enhanced carrier mobilities in two-dimensional electron gases at III-III/i-v oxide heterostructures interfaces, Phys. Rev. B, 85, 235109, 10.1103/PhysRevB.85.235109 You, 2013, Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 heterostructures, Phys. Rev. B, 88, 155111, 10.1103/PhysRevB.88.155111 Boucherit, 2013, Extreme charge density SrTiO3/GdTiO3 heterostructure field effect transistors, Appl. Phys. Lett, 102, 242909, 10.1063/1.4811273 Boucherit, 2014, Modulation of over 1014 cm−2 electrons in SrTiO3/GdTiO3 heterostructure, Appl. Phys. Lett, 104, 182904, 10.1063/1.4875796 Lines, 1977 Wemple, 1970, Polarization fluctuations the optical absorption edge in BaTiO3, Phys. Rev B, 2, 2679, 10.1103/PhysRevB.2.2679 Roman, 2017, BaTiO3 thin films on platinized silicon: growth, characterization and resistive memory behavior, Thin Solid Films, 628, 208, 10.1016/j.tsf.2017.03.038 Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev. B, 136, B864, 10.1103/PhysRev.136.B864 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 140, A1133, 10.1103/PhysRev.140.A1133 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Okamoto, 2006, Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices, Phys. Rev. Lett, 97, 056802, 10.1103/PhysRevLett.97.056802 Abdelouahed, 2007, Electronic structure and x-ray magnetic circular dichroism of gadolinium beyond the local spin density approximation, Phys. Rev. B, 75, 094428, 10.1103/PhysRevB.75.094428 Aoyagi, 2002, Composite structure of BaTiO3 nanoparticle investigated by SR X-ray diffraction, J. Phys. Soc. Jpn., 71, 1218, 10.1143/JPSJ.71.1218 Maclean, 1979, Crystal structures and crystal chemistry of the RETiO3 perovskites: RE = La, Nd, Sm, Gd, Y,, J. Solid State Chem., 30, 35, 10.1016/0022-4596(79)90127-0 Bjaalie, 2016, Point defects, impurities, and small hole polarons in GdTiO3, Phys. Rev. B, 93, 115316, 10.1103/PhysRevB.93.115316 Itoh, 1997, NMR study of microscopic magnetic properties of mott-hubbard insulators RTiO3 (R = Y and La), Physica B, 19, 237 Itoh, 1999, Orbital ordering and local magnetic properties of mott-hubbard insulators YTiO3 and LaTiO3: NMR study, J. Phys. Soc. Jpn., 68, 2783, 10.1143/JPSJ.68.2783 Ichikawa, 2000, Direct observation of orbital ordering in YTiO3, Physica B, 281, 482, 10.1016/S0921-4526(99)00950-3 Nakao, 2002, Quantitative determination of the atomic scattering tensor in orbitally ordered YTiO3 by using a resonant X-ray scattering technique, Phys. Rev. B, 66, 184419, 10.1103/PhysRevB.66.184419 Mochizuki, 2004, Orbital physics in the perovskite Ti oxides, New J. Phys., 6, 154, 10.1088/1367-2630/6/1/154 Mochizuki, 2001, Magnetic and orbital states and their phase transition of the perovskite-type Ti oxides: Strong coupling approach, J. Phys. Soc. Jpn., 70, 1777, 10.1143/JPSJ.70.1777