Sự đa dạng ấn tượng của các chất hoạt động bề mặt tự nhiên: 6. Glycosid alkaloid hoạt tính sinh học từ biển và trên cạn

Lipids - Tập 40 - Trang 1081-1105 - 2005
Valery M. Dembitsky1,2
1School of Pharmacy, Hebrew University, Jerusalem, Israel
2Department of Organic Chemistry, Hebrew University, Jerusalem, Isiael

Tóm tắt

Bài viết tổng quan này trình bày 209 glycosid alkaloid được phân lập và nhận diện từ thực vật, vi sinh vật và động vật biển không xương sống, thể hiện các hoạt tính sinh học khác nhau. Chúng rất đáng quan tâm, đặc biệt đối với ngành công nghiệp dược phẩm và/hoặc dược lý. Những glycosid hoạt tính sinh học này có tiềm năng tốt cho việc tổng hợp hóa học các hợp chất hữu ích như chất chống oxy hóa, chống ung thư, kháng khuẩn và chất kháng vi sinh vật. Các hợp chất glycosid này đã được phân thành nhiều nhóm khác nhau, bao gồm: acridone; aporphine; benzoxazinoid; ergot; indole; kháng sinh alkaloid enediyne; glycosid alkaloid lupine; glycosid alkaloid piperidine, pyridine, pyrrolidine và pyrrolizidine; glycosid alkaloid quinoline và isoquinoline; glycoalkaloid steroid; và các glycosid alkaloid khác.

Từ khóa

#glycosid alkaloid #hoạt tính sinh học #chất chống oxy hóa #chống ung thư #kháng vi sinh vật #động thực vật biển #phân lập hóa học

Tài liệu tham khảo

Dembitsky, V.M. (2005) Astonishing Diversity of Natural Surfactants. 5. Biological Active Glycosides of Aromatic Metabolites, Lipids 40, 869–900. Raffauf, R.F. (1996) Plant Alkaloids: A Guide To Their Discovery and Distribution, 298 pp., Food Products Press, Binghamton, NY. Harborne, J.B., Baxter, H., and Moss, G. (1998) Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants, 976 pp., CRC Press, Boca Raton, FL. Cordell, G.A. (ed.) (1998) Alkaloids: Chemistry and Biology, Vol. 51, 439 pp., Academic Press, London. Pelletier, S.W. (2001) (ed.), Alkaloids: Chemical and Biological Perspectives, Vol. 15, Pergamon, London. Roberts, M.F., and Wink, M. (1998) Alkaloids: Biochemistry, Ecology, and Medicinal Applications, 486 pp., Kluwer Academic, Dordrecht. Hesse, M. (2002) Alkaloids: Nature’s Curse or Blessing? 400 pp., Wiley-VCH Press, Weinheim. Daly, J.W. (2004) Marine Toxins and Nonmarine Toxins: Convergence or Symbiotic Organisms? J. Nat. Prod. 67, 1211–1215. Daly, J.W. (1998) Thirty Years of Discovering Arthropod Alkaloids in Amphibian Skin, J. Nat. Prod. 61, 162–172. Proksch, P., Ebel, R., Edrada, R.A., Wray, V., and Steube, K. (2003) Bioactive Natural Products from Marine Invertebrates and Associated Fungi, Prog. Mol. Subcell. Biol. 37, 117–142. Dembitsky, V.M., Gloriozova, T.A., and Poroikov, V.V. (2005) Novel Antitumor Agents: Marine Sponge Alkaloids, Their Synthetic Analogs and Derivatives, Mini Rev. Med. Chem. 5, 319–336. Kim, J., and Park, E.J. (2002) Cytotoxic Anticancer Candidates from Natural Resources, Curr. Med. Chem. Anti-Cancer Agents 2, 485–537. Krishna, C. (2005) Solid-State Fermentation Systems. An Overview, Crit. Rev. Biotechnol. 25, 1–30. Hashimoto, T., and Yamada, Y. (2003) New Genes in Alkaloid Metabolism and Transport, Curr. Opin. Biotechnol. 14, 163–168. Kelecom, A. (2002) Secondary Metabolites from Marine Microorganisms, An. Acad, Bras. Cienc. 74, 151–170. Danishefsky, S.J., Inoue, M., and Trauner, D. (2000) Synthesis of Immunomodulatory Marine Natural Products, Ernst Schering Res. Found. Workshop 32, 1–24. Toyooka, N. (2001) Synthesis and Its Application to the Synthesis of Biologically Active Natural Products of New and Versatile Chiral Building Blocks, Yakugaku Zasshi 121, 467–479. Mori, M. (2005) Development of New Synthetic Method Using Organometallic Complexes and an Application Toward Natural Product Synthesis, Yakugaku Zasshi 125, 51–72. Delfourne, E., and Bastide, J. (2003) Marine Pyridoacridine Alkaloids and Synthetic Analogues as Antitumor Agents, Med. Res. Rev. 23, 234–252. Cossy, J. (2005) Selective Methodologies for the Synthesis of Biologically Active Piperidinic Compounds, Chem. Rec. 5, 70–80. Skaltsounis, A.L., Mitaku, S., and Tillequin, F. (2000) Acridone Alkaloids, in Alkaloids (Cordell, G.A., ed.), Vol. 54, pp. 259–377, Academic Press, London. Bastow, K.F., Itoigawa, M., Furukawa, H., Kashiwada, Y., Bori, I.D., Ballas, L.M., and Lee, K.H. (1994) Antiproliferative Actions of 7-Substituted 1,3-Dihydroxyacridones; Possible Involvement of DNA Topoisomerase II and Protein Kinase C as Biochemical Targets, Bioorg. Med. Chem. 2, 1403–1411. Fujioka, H., Nishiyama, Y., Furukawa, H., and Kumada, N. (1989) In vitro and in vivo Activities of Atalaphillinine and Related Acridone Alkaloids Against Rodent Malaria, Antimicrob. Agents Chemother. 33, 6–9. Svoboda, G.H., Poore, G.A., Simpson, P.J., and Boder, G.B. (1966) Alkaloids of Acronychia baueri Schott. I. Isolation of the Alkaloids and a Study of the Antitumor and Other Biological Properties of Acronycine, J. Pharm. Sci. 55, 758–768. Tan, P., and Auersperg, N. (1973) Effects of the Antineoplastic Alkaloid Acronycine on the Ultrastructure and Growth Patterns of Cultured Cells, Cancer Res. 33, 2320–2329. Schneider, J., Evans, E.L., Grunberg, E., and Fryer, R.I. (1972) Synthesis and Biological Activity of Acronycine Analogs, J. Med. Chem. 15, 266–270. Chaya, N., Terauchi, K., Yamagata, Y., Kinjo, J., and Okabe, H. (2004) Antiproliferative Constituents in Plants 14. Coumarins and Acridone Alkaloids from Boenninghausenia japonica Nakai, Biol. Pharm. Bull. 27, 1312–1326. Tillequin, F., and Koch, M. (2005) Acronycine Revisited: Development of Benzo[b]acronycine Antitumor Agents, Ann. Pharm. Fr. 63, 35–43. Reisch, J., Rozsa, Z., Szendrei, K., Novak, I., and Minker, E. (1976) Studies in the Area of Natural Product Chemistry. Part LV. Acridone Alkaloid Glucoside from Ruta graveolens, Phytochemistry 15, 240–241. Kuzovkina, I.N., Al’terman, I., and Schneider, B. (2004) Specific Accumulation and Revised Structures of Acridone Alkaloid Glucosides in the Tips of Transformed Roots of Ruta graveolens, Phytochemistry 65, 1095–1100. Kuzovkina, I.N., Rozsa, Z., Szendrei, K., and Smirnov, A.M. (1983) Alkaloids of Boenninghausenia albiflora Reichenb. Callus Tissue, Rasti. Resur. (USSR) 19, 374–378. Ahua, K.M., Ioset, J.-R., Ransijn, A., Mauël, J., Mavi, S., and Hostettmann, K. (2004) Antileishmanial and Antifungal Acridone Derivatives from the Roots of Thamnosma rhodesica, Phytochemistry 65, 963–968. Basco, L., Mitaku, S., Skaltsounis, A.L., Ravelomanantsoa, N., Tillequin, F., Koch, M., and Le Bras, J. (1994) In vitro Activities of Furoquinoline and Acridone Alkaloids Against Plasmodium falciparum, Antimicrob. Agents Chemother. 38, 1169–1171. Stevigny, C., Bailly, C., and Quetin-Leclercq, J. (2005) Cytotoxic and Antitumor Potentialities of Aporphinoid Alkaloids, Curr. Med. Chem. Anti-Cancer Agents 5, 173–182. Kashiwaba, N., Ono, M., Toda, J., Suzuki, H., and Sano, T. (2000) Aporphine Glycosides from Stephania cepharantha Seeds, J. Nat. Prod. 63, 477–479. Israilov, I.A., Denisenko, O.N., Yunusov, M.S., and Yunusov, S.Y. (1976) Structure of Floripavidine, Khim. Prirod. Soed. (USSR) 6, 799–801. Banerji, J., Chatterjee, A., Patra, A., Bose, P., Das, R., Das, B., Shamma, M., and Tantisewie, B. (1994) Kamaline, an Unusual Aporphine Alkaloid, from Stephania venosa, Phytochemistry 36, 1053–1056. Zhu, D., Wang, B., Huang, B., Xu, R., Qiu, Y., Chen, X., and Quan, D. (1983) Two New Oxoaporphine Alkaloids Isolated from Aristolochia tuberosa. I. Structures of Tuberosinone and Tuberosinone-N-β-d-glucoside, Huaxue Xuebao 41, 74–78. Zhu, D., Wang, B., Huang, B., Xu, R., Qui, Y., and Chen, X. (1982) Two New 4,5-Dioxoaporphine Alkaloids Isolated from Aristolochia tuberose, Heterocycles 17, 345–347. Kostalova, D., Hrochova, V., Pronayova, N., and Lesko, J. (1991) Constituents of Aristolochia clematitis L, Chemical Papers (Czechia) 45, 713–716. Sicker, D., Frey, M., Schulz, M., and Gierl, A. (2000) Role of Natural Benzoxazinones in the Survival Strategy of Plants, Inter. Rev. Cytol. 198, 319–346. Wolf, R.B., Spencer, G.F., and Plattner, R.D. (1985) Benzoxazolinone, 2,4-Dihydroxy-1,4-benzoxazin-3-one, and Its Glucoside from Acanthus mollis Seeds Inhibit Velvetleaf Germination and Growth, J. Nat. Prod. 48, 59–63. Chatterjee, A., Sharma, N.J., Basserji, J., and Basa, S.C. (1990) Studies on Acanthaceae. Benzoxazine Glucoside and Benzoxazolone from Blepharis edulis Pers., Indian J. Chem, Sect. B 29, 132–134. özden, S., Özden, T., Attila, I., Kücükislamoglu, M., and Okatan, A. (1992) Isolation and Identification via High-Performance Liquid Chromatography and Thin-Layer Chromatography of Benzoxazolinone Precursors from Consolida orientalis Flowers, J. Chromatogr. 609, 402–406. Pratt, K., Kumar, P., and Chilton, W.S. (1995) Cyclic Hydroxamic Acids in Dicotyledonous Plants, Biochem. Syst. Ecol. 23, 781–785. Hasegawa, T., Yamada, K., Shigemori, H., Miyamoto, K., Ueda, J., and Hasegawa, K. (2004) Isolation and Identification of Phototropism-Regulating Substances Benzoxazinoids from Maize Coleoptiles, Heterocycles 63, 2707–2712. Rosenfeld, M.J., and Forsberg, S.R. (2004) Novel Compounds for Use in Weight Loss and Appetite Suppression in Humans, U.S. Patent Appl. Publ. 38 pp., Continuation in part of U.S. Ser. No. 834,592. US A1 20040930. Kanchanapoom, T., Kamel, M.S., Kasai, R., Picheansoonthon, C., Hiraga, Y., and Yamasaki, K. (2001) Benzoxazinoid Glucosides from Acanthus ilicifolius, Phytochemistry 58, 637–640. Baumeler, A., Hesse, M., and Werner, C. (2000) Benzoxazinoids-Cyclic Hydroxamic Acids, Lactams and Their Corresponding Glucosides in the Genus Aphelandra (Acanthaceae), Phytochemistry 53, 213–222. Xie, H., Wei, H., Yashikawa, M., Xia, N., and Wei, X. (2005) Benzoxazinoid Glucosides from Baphicacanthus cusia, Biochem. Syst. Ecol. 33, 551–554. Kanchanapoom, T., Kasai, R., Picheansoonthon, C., and Yamasaki, K. (2001) Megastigmane, Aliphatic Alcohol and Benzoxazinoid Glycosides from Acanthus ebracteatus, Phytochemistry 58, 811–817. Alipieva, K.I., Taskova, R.M., Evstatieva, L.N., Handjieva, N.V., and Popov, S.S. (2003) Benzoxazinoids and Iridoid Glucosides from Four Lamium Species, Phytochemistry 64, 1413–1417. Barger, G. (1920) Ergot, Its History and Chemistry, Pharmaceut. J. 105, 470–473. Flieger, M., Wurst, M., and Shelby, R. (1997) Ergot Alkaloids—Sources, Structures and Analytical Methods, Folia Microbiol. (Praha) 42, 3–30. Van Dongen, P.W.J., and De Groot, A.N.J.A. (1995) History of Ergot Alkaloids from Ergotism to Ergometrine, Eur. J. Obstet. Gynaecol. Reprod. Biol. 60, 109–116. Steyn, P.S. (1995) Mycotoxins, General View, Chemistry and Structure, Toxicol. Lett. 82–83, 843–851. Pohland, A.E. (1993) Mycotoxins in Review, Food Addit. Contam. 10, 17–28. Silerstein, S.D., and McCrory, D.C. (2003) Ergotamine and Dihydroergotamine: History, Pharmacology, and Efficacy, Headache 43, 144–166. Inzelberg, R., Schechtman, E., and Nisipeanu, P. (2003) Cabergoline, Pramipexole and Ropinirole Used as Monotherapy in Early Parkinson’s Disease: An Evidence-Based Comparison, Drugs Aging 20, 847–855. Mucke, H. (2002) Therapies in Development for the Treatment of Migraine, Expert Opin. Investig. Drugs 11, 1813–1820. Kren, V., and Cvak, L. (eds.) (1999) Ergot: Genus Claviceps (Medicinal & Aromatic Plants—Industrial Profiles), Harwood Academic, Amsterdam. Mantegani, S., Brambilla, E., and Varasi, M. (1999) Ergoline Derivatives: Receptor Affinity and Selectivity, Farmaco 54, 288–296. Floss, H.G., Gunther, H., Mothes, U., and Becker, I. (1967) Isolation of Elymoclavin-O-β-d-fructoside from Cultures of Ergot, Z. Naturforsch. [B] 4, 399–402. Flieger, M., Zelenkova, N.F., Sedmera, P., Kren, V., Novak, J., Rylko, V., Sajdl, P., and Rehacek, Z. (1989) Ergot Alkaloid Glycosides from Saprophytic Cultures of Claviceps. I. Elymoclavine Fructosides, J. Nat. Prod. 52, 506–510. Flieger, M., Kren, V., Zelenkova, N.F., Sedmera, P., Novak, J., and Sajdl, P. (1990) Ergot Alkaloid Glycosides from Saprophytic Cultures of Claviceps, II. Chanoclavine I Fructosides, J. Nat. Prod. 53, 171–175. Kren, V., and Martínková, L. (2001) Glycosides in Medicine: The Role of Glycosidic Residue in Biological Activity, Curr. Med. Chem. 8, 1313–1338. Somei, M., and Yamada, F. (2005) Simple Indole Alkaloids and Those with a Non-rearranged Monoterpenoid Unit, Nat. Prod. Rep. 22, 73–103. Dembitsky, V.M. (2002) Bromo- and Iodo-containing Alkaloids from Marine Microorganisms and Sponges, Bioorg. Khim. (Moscow) 28, 196–208. Saxton, J.E. (1977) Indole Alkaloids, in Alkaloids, Vol. 7, pp. 183–246, Academic Press, London. Minami, Y. (2001) Indican Metabolism in Polygonum tinctorium, Kagaku To Seibutsu 39, 202–207. Sawabe, A., Nomura, M., Fujihara, Y., Tada, T., Hattori, F., Shiohara, S., Shimomura, K., Matsubara, Y., Komemushi, S., Okamoto, T., et al. (2001) Cosmetic Substances for Skin Depigmentation from African Dietary Leaves, Celosia argentea L, Kinki Daigaku Nogaku Sogo Kenkyusho Hokoku 9, 141–146. Vu, T.T. (1999) Extraction of Glucoside (indican) from Vietnamese Indigofera for Indigo Blue Dyes, Hoa Hoc Va Cong Nghiep Hoa Chat (in Vietnamese) 2, 28–32. Kokubun, T., Edmonds, J., and John, P. (1998) Indoxyl Derivatives in Woad in Relation to Medieval Indigo Production, Phytochemistry 49, 79–87. Murakami, T., Kishi, A., Sakurama, T., Matsuda, H., and Yoshikawa, M. (2001) Chemical Constituents of Two Oriental Orchids, Calanthe discolor and C. liukiuensis: Precursor Indole Glycoside of Tryptanthrin and Indirubin, Heterocycles 54, 957–966. Yoshikawa, M., Murakami, T., Kishi, A., Sakurama, T., Matsuda, H., Nomura, M., Matsuda, H., and Kubo, M. (1998) Novel Indole S,O-Bisdesmoside, Calanthoside, the Precursor Glycoside of Tryptanthrin, Indirubin, and Isatin, with Increasing Skin Blood Flow Promoting Effects, from Two Calanthe Species (Orchidaceae), Chem. Pharm. Bull. (Tokyo) 46, 886–888. Ouyang, Y., Koike, K., and Ohmoto, T. (1994) Indole Alkaloids from Brucea mollis var. tonkinensis, Phytochemistry 37, 575–578. Hagin, R.D. (1989) Isolation and Identification of 5-Hydroxyindole-3-acetic Acid and 5-Hydroxytryptophan, Major Allelopathic Aglycons in Quackgrass (Agropyron repens L. Beauv.), J. Agric. Food Chem. 37, 1143–1149. Wiese, G., and Grambow, H.J. (1986) Indole-3-methanol-β-d-glucoside and Indole-3-carboxylic Acid-β-d-glucoside Are Products of Indole-3-acetic Acid Degradation in Wheat Leaf Segments, Phytochemistry 25, 2451–2455. Nonhebel, H.M., Kruse, L.I., and Bandurski, R.S. (1985) Indole-3-acetic Acid Catabolism in Zea mays Seedlings. Metabolic Conversion of Oxindole-3-acetic Acid to 7-Hydroxy-2-oxindole-3-acetic Acid 7′-O-d-Glucopyranoside, J. Biol. Chem. 260, 12685–12689. Schumacher, R.W., Harrigan, B.L., and Davidson, B.S. (2001) Kahakamides A and B, New Neosidomycin Metabolites from a Marine-Derived Actinomycete, Tetrahedron Lett. 42, 5133–5135. Furuta, R., Naruto, S., Tamura, A., and Yokogawa, K. (1979) Neosidomycin, a New Antibiotic of Streptomyces, Tetrahedron Lett. 19, 1701–1704. Ito, T., Ohba, K., Koyama, M., Sezaki, M., Tohyama, H., Shomura, T., Fukuyasu, H., Kazuno, Y., Niwa, T., and Kojima, M. (1984) A New Antiviral Antibiotic SF-2140 Produced by Actinomadura, J. Antibiot. 37, 931–934. Tohyama, H., Miyadoh, S., Ito, M., Shomura, T., Ito, T., Ishikawa, T., and Kojima, M. (1984) A New Indole N-Glycoside Antibiotic SF-2140 from an Actinomadura. I. Taxonomy and Fermentation of Producting Microorganism, J. Antibiot. 37, 1144–1148. Marinos, V.A., Tate, M.E., and Williams, P.J. (1992) Glucosides of Ethyl Indole-3-lactate and Uroterpenol in Riesling Wine, Phytochemistry 31, 2755–2759. Ding, W., Williams, D.R., Northcote, P., Siegel, M.M., Tsao, R., Ashcroft, J., Morton, G.O., Alluri, M., and Abranat, D. (1994) Pyrroindomycins, Novel Antibiotics Produced by Streptomyces rugosporus sp. LL-42D005. I. Isolation and Structure Determination, J. Antibiot. 47, 1250–1257. Liu, H.M., Jiang, Z., and Feng, X.Z. (1993) New Oxindole Alkaloid Glycosides from Uncaria sinensis, Yaoxue Xuebao 28, 849–853. Salim, A.A., Garson, M.J., and Craik, D.J. (2004) New Indole Alkaloids from the Bark of Alstonia scholaris, J. Nat. Prod. 67, 1591–1594. Valverde, J., Tamayo, G., and Hesse, M. (1999) β-Carboline Monoterpenoid Glucosides from Palicourea adusta, Phytochemistry 52, 1485–1489. Ouyang, Y., Mitsunaga, K., Koike, K., and Ohmoto, T. (1995) Alkaloids and Quassinoids of Brucea mollis var. tonkinensis, Phytochemistry 39, 911–913. Ouyang, Y., Koike, K., and Ohmoto, T. (1994) Canthin-6-one Alkaloids from Brucea mollis var. tonkinensis. Phytochemistry 36, 1543–1546. Leewanich, P., Tohda, M., Matsumoto, K., Subhadhirasakul, S., Takayama, H., Aimi, N., and Watanabe, H. (1998) A Possible Mechanism Underlying Corymine Inhibition of Glycine-Induced Cl− Current in Xenopus Oocytes, Eur. J. Pharmacol. 348, 271–277. Takayama, H., Subhadhirasakul, S., Keawpradub, N., Mizuki, J., Ohmori, O., Kitajima, M., Aimi, N., Ponglux, D., and Sakai, S.-I. (1994) Structure Elucidation of the Novel Indole Alkaloids from the Three Apocynaceae Plants Growing in Southern Thailand, Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 36, 541–548. Takayama, H., Subhadhirasakul, S., Ohmori, O., Kitajima, M., Ponglux, D., and Aimi, N. (1998) Hunterioside B, a Disaccharide Carrying Monoterpenoid Indole Alkaloid, from Hunteria zeylanica, Heterocycles 47, 87–90. Morita, H., Ichihara, Y., Takeya, K., Watanabe, K., Itokawa, H., and Motidome, M. (1989) A New Indole Alkaloid Glycoside from the Leaves of Palicourea marcgravii, Planta Med. 55, 288–289. Nonato, M.G., Truscott, R.J.W., Carver, J.A., Hemling, M.E., and Garson, M.J. (1995) Glucoindole Alkaloids from Ophiorrhiza acuminate, Planta Med. 61, 278–280. Lin, M., Li, S.Z., Liu, X., and Yu, D.Q. (1989) Structures of Two New Alkaloidal Glucosides of Nauclea officinalis Pierre ex Pitard, Yaoxue Xuebao 24, 32–36. Aimi, N., Tsuyuki, T., Murakami, H., Sakai, S., and Haginiwa, J. (1985) Structure of Ophiorines A and B; Novel Type Gluco Indole Alkaloids Isolated from Ophiorrhiza spp, Tetrahedron Lett. 26, 5299–5302. Itoh, A., Tanahashi, T., Nagakura, N., and Nishi, T. (2003) Two Chromone-Secoiridoid Glycosides and Three Indole Alkaloid Glycosides from Neonauclea sessilifolia, Phytochemistry 62, 359–369. Erdelmeier, C.A.J., Wright, A.D., Orjala, J., Baumgartner, B., Rali, T., and Sticher, O. (1991) New Indole Alkaloid Glycosides from Nauclea orientalis, Planta Med. 57, 149–152. Abreu, P., and Pereira, A. (2001) New Indole Alkaloids from Sarcocephalus latifolius, Nat. Prod. Lett. 15, 43–48. Morikawa, T., Sun, B., Matsuda, H., Wu, L.J., Harima, S., and Yoshikawa, M. (2004) Bioactive Constituents from Chinese Natural Medicines. XIV. New Glycosides of β-Carboline Type Alkaloid, Neolignan, and Phenylpropanoid from Stellaria dichotoma L. var. lanceolata and Their Antiallergic Activities, Chem. Pharm. Bull. (Tokyo) 52, 1194–1199. Burger, W., and Taylor, C.M. (1993) Fieldiana Botany, New Series No. 33, Flora Costaricensis, Family No. 202 Rubiaceae, p. 244, Field Museum of Natural History, Chicago. Joly, L.G., Guerra, S., Septimo, R., Solis, P.N., Correa, M., Gupta, M., Levy, S., and Sandberg, F. (1987) Ethnobotanical Inventory of Medicinal Plants Used by the Guaymi Indians in Western Panama. Part I, J. Ethnopharmacol. 20, 145–171. Di Stasi, L.C. (1995) Amoebicidal Compounds from Medicinal Plants, Parassitologia (Brazil) 37, 29–39. Achenbach, H., Lottes, M., Waibel, R., Karikas, G.A., Correa, M.A.D., and Gupta, M.P. (1995) Alkaloids and Other Compounds from Psychotria correae, Phytochemistry 38, 1537–1545. Lamidi, M., Ollivier, E., Mahiou, V., Debrauwer, R.F.L., Ekekang, L.N., and Balansard, G. (2005) Gluco-indole Alkaloids from the Bark of Nauclea diderrichii. 1H and 13C NMR Assignments of 3α-5α-Tetrahydrodeoxycordifoline Lactam and Cadambine Acid, Magn. Reson. Chem. 43, 427–429. Endo, K., Oshima, Y., and Kikuchi, H. (1983) Part 50 in the Series on the Validity of the Oriental Medicines. Hypotensive Principles of Uncaria Hooks, Planta Med. 49, 188–190. Kitajima, M., Hashimoto, K.I., and Yokoya, M. (2000) A New Gluco Indole Alkaloid, 3,4-Dehydro-5-carboxystrictosidine, from Peruvian Uña de Gato (Uncaria tomentosa), Chem. Pharm. Bull. (Tokyo) 48, 1410–1412. Bush, J.A., Long, B.H., Catino, J.J., and Bradner, W.T. (1987) Production and Biological Activity of Rebeccamycin, a Novel Antitumor Agent, J. Antibiot. 40, 668–678. Carrupt, P.-A., Testa, B., Bechalany, A., ElTayar, N., Descas, P., and Perrissoud, D. (1991) Morphine 6-Glucuronide and Morphine 3-Glucuronide as Molecular Chameleons with Unexpected Lipophilicity, J. Med. Chem. 34, 1272–1275. Lam, K.S., Schroeder, D.R., Veitch, J.M., Matson, J.A., and Forenza, S. (1991) Isolation of a Bromo Analog of Rebeccamycin from Saccharothrix aerocolonigenes, J. Antibiot. (Tokyo) 44, 934–939. Nettleton, D.E., Doyle, T.W., Krishnan, B., Matsumoto, G.K., and Clardy, J. (1985) Isolation and Structure of Rebeccamycin—A New Antitumor Antibiotic from Nocardia aerocoligenes, Tetrahedron Lett. 26, 4011–4014. Prudhomme, M. (2003) Rebeccamycin Analogues as Anticancer Agents, Eur. J. Med. Chem. 38, 123–140. Prudhomme, M. (2000) Recent Developments of Rebeccamycin Analogues as Topoisomerase I Inhibitors and Antitumor Agents, Curr. Med. Chem. 7, 1189–1212. Subbaraju, G.V., Kavitha, J., Rajasekhar, D., and Jimenez, J.I. (2004) Jusbetonin, the First Indolo[3,2-b]quinoline Alkaloid Glycoside, from Justicia betanica, J. Nat. Prod. 67, 461–462. Bonjouklian, R., Smitka, T.A., Doolin, L.E., Molloy, R.M., Debono, M., Shaffer, S.A., Moore, R.E., Stewart, J.B., and Patterson, G.M.L. (1991) Tjipanazoles, New Antifungal Agents from the Blue-Green Alga Tolypothrix tjipanasensis, Tetrahedron 47, 7739–7750. Voldoire, A., Moreau, P., Sancelme, M., Matulova, M., Léonce, S., Pierré, A., Hickman, J., Pfeiffer, B., Renard, P., Dias, N., et al. (2004) Analogues of Antifungal Tjipanazoles from Rebeccamycin, Bioorg. Med. Chem. 12, 1955–1962. Strack, D., Vogt, T., and Schliemann, W. (2003) Recent Advances in Betalain Research, Phytochemistry 62, 247–269. Steglich, W., and Strack, D. (1990) Betalains, in The Alkaloids, Chemistry and Pharmacology (Brossi, A., ed.), pp. 1–62, Academic Press, London. Cai, Y., Sun, M., and Corke, H. (2003) Antioxidant Activity of Betalains from Plants of the Amaranthaceae, J. Agric. Food Chem. 51, 2288–2294. Saldanha, P.H., Magalhaes, L.E., and Horta, W.A. (1960) Race Differences in the Ability to Excrete Beetroot Pigment (betanin), Nature 187, 806. Piattelli, M., and Imperato, F. (1969) Betacyanins of the Family Cactaceae, Phytochemistry 8, 1503–1507. Cai, Y., Sun, M., and Corke, H. (2001) Identification and Distribution of Simple and Acylated Betacyanins in the Amaranthaceae, J. Agric. Food Chem. 49, 1971–1978. Kugler, F., Stintzing, F.C., and Carle,R. (2004) Identification of Betalains from Petioles of Differently Colored Swiss Chard (Beta vulgaris L. ssp. cicla [L.] Alef. cv. Bright Lights) by High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry, J. Agric. Food Chem. 52, 2975–2981. Schliemann, W., Joy, R.W., IV, Komamine, A., Metzger, J.W., Nimtz, M., Wray, V., and Strack, D. (1996) Betacyanins from Plants and Cell Cultures of Phytolacca americana, Phytochemistry 42, 1039–1046. Piattelli, M., and Imperato, F. (1970) Betacyanins from Bougainvillea, Phytochemistry 9, 455–458. Strack, D., Vogt, T., and Schliemann, W. (2003) Recent Advances in Betalain Research, Phytochemistry 62, 247–269. Smith, A.L., and Nicolaou, K.C. (1996) The Enediyne Antibiotics, J. Med. Chem. 39, 2103–2117. Dai, W.M. (2003) Natural Product Inspired Design of Enediyne Prodrugs via Rearrangement of an Allylic Double Bond, Curr. Med. Chem. 10, 2265–2283. Nicolaou, K.C., Smith, A.L., and Yue, E.W. (1993) Chemistry and Biology of Natural and Designed Enediynes, Proc. Natl. Acad. Sci. USA 90, 5881–5888. Oku, N., Matsunaga, S., and Fusetani, N. (2003) Shishijimicins A-C, Novel Enediyne Antitumor Antibiotics from the Ascidian Didemnum proliferum, J. Am. Chem. Soc. 125, 2044–2045. Hofstead, S.J., Matson, J.A., Malacko, A.R., and Marquardt, H. (1992) Kedarcidin, a New Chromoprotein Antitumor Antibiotic. II. Isolation, Purification and Physico-chemical Properties, J. Antibiot. (Tokyo) 45, 1250–1254. Zein, N., Colson, K.L., Leet, J.E., Schroeder, D.R., Solomon, W., Doyle, T.W., and Casazza, A.M. (1993) Kedarcidin Chromophore: An Enediyne That Cleaves DNA in a Sequence-Specific Manner, Proc. Natl. Acad. Sci. USA 90, 2822–2826. Shao, R.G., and Zhen, Y.S. (1992) Antitumor Activity of New Antitumor Antibiotic C1027 and Its Monoclonal Antibody Assembled Conjugate, Yao Xue Xue Bao 27, 486–491. Li, J.Z., Jiang, M., Xue, Y.C., and Zhen, Y.S. (1993) Antitumor Effect of the Immunoconjugate Composed of Antibiotic C1027 and Fab Fragment from a Monoclonal Antibody Directed Against Human Hepatoma, Yao Xue Xue Bao 28, 260–265. Shen, B., and Liu, W. (2003) The Streptomyces globisporus Gene Cluster for Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 and the Generation of Novel Variants, U.S. Pat. Appl. Publ. 119 pp., U.S. Patent 2003157654 A1 20030821. Hanada, M., Ohkuma, H., Yonemoto, T., Tomita, K., Ohbayashi, M., Kamei, H., Miyaki, T., Konishi M., Kawaguchi, H., and Forenza, S. (1991) Maduropeptin, a Complex of New Macromolecular Antitumor Antibiotics, J. Antibiot. (Tokyo) 44, 403–414. James, L.F., Panter, K.E., Gaffield, W., and Molyneux, R.J. (2004) Biomedical Applications of Poisonous Plant Research, J. Agric. Food Chem. 52, 3211–3230. Lopez-Ortiz, S., Panter, K.E., Pfister, J.A., and Launchbaugh, K.L. (2004) The Effect of Body Condition on Disposition of Alkaloids from Silvery Lupine (Lupinus argenteus Pursh) in Sheep, J. Anim. Sci. 82, 2798–2805. Smith, R.A. (1987) Potential Edible Lupine Poisonings in Humans, Vet. Hum. Toxicol. 29, 444–445. Michael, J.P. (2004) Indolizidine and Quinolizidine Alkaloids, Nat. Prod. Rep. 21, 625–649. Abdel-Halim, O.B., El-Gammal, A.A., Abdel-Fattah, H., and Takeya, K. (1999) Glycosidic Alkaloids from Lupinus varius, Phytochemistry 51, 5–9. Suzuki, H., Koike, Y., Takamatsu, S., Sekine, T., Saito, K., and Murakoshi, I. (1994) A Glycosidic Lupine Alkaloid from Lupinus hirsutus, Phytochemistry 37, 591–592. Murakoshi, I., Toriizuka, K., Haginiwa, J., Ohmiya, S., and Otomasu, H. (1979) (−)-(trans-4′-β-d-Glycopyranosyloxy-3′-methoxycinnamyl)lupinine, a New Lupin Alkaloid in Lupinus Seedlings, Phytochemistry 18, 699–700. Felpin, F.X., and Lebreton, J. (2004) History, Chemistry and Biology of Alkaloids from Lobelia inflata, Tetrahedron 60, 10127–10153. Daly, J.W., Myers, C.W., and Whittaker, N. (1987) Further Classification of Skin Alkaloids from Neotropical Poison Frogs (Dendrobatidae), with a General Survey of Toxic/Noxious Substances in the Amphibian, Toxicon 25, 1023–1095. O’Hagan, D. (2000) Pyrrole, Pyrrolidine, Pyridine, Piperidine and Tropane Alkaloids, Nat. Prod. Rep. 17, 435–446. Yildiz, D. (2004) Nicotine, Its Metabolism and an Overview of Its Biological Effects, Toxicon 43, 619–632. Asano, N. (2003) Naturally Occurring Iminosugars and Related Compounds: Structure, Distribution, and Biological Activity, Curr. Top. Med. Chem. 3, 471–484. Simmonds, M.S.J., Kite, G.C., and Porter, E.A. (1999) Taxonomic Distribution of Iminosugars in Plants and Their Biological Activities, in Iminosugars as Glycosidase Inhibitors (Stütz, A.E., ed.), pp. 8–30, Wiley-VCH, Weinheim. Yamashita, T., Yasuda, K., Kizu, H., Kameda, Y., Watson, A.A., Nash, R.J., Fleet, G.W.J., and Asano, N. (2002) New Polyhydroxylated Pyrrolidine, Piperidine, and Pyrrolizidine Alkaloids from Scilla sibirica, J. Nat. Prod. 65, 1875–1881. Yayli, N., and Baltaci, C. (1997) A Novel Glycoside Linked Piperidine Alkaloid from Cyclamen coum, Turkish J. Chem. 21, 139–143. Willems, M. (1988) A Glucosidic Alkaloid Artifact, Originated from Secoiridoid Glucosides from Fruits of Ligustrum vulgare L, Arch. Pharm. (Weinheim) 321, 357–358. Orsini, F., Pelizzoni, F., Pulici, M., and Verotta, L. (1989) Isolation of a New Compounds Related to 4-Methoxypyridoxine from Albizzia lucida, Gazzetta Chim. Ital. 119, 63–64. McInnes, A.G., Smith, D.G., Walter, J.A., Wright, J.L.C., Vining, L.C., and Arsenault, G.P. (1978) Caerulomycin D, a Novel Glycosidic Derivative of 3,4-Dihydroxy-2,2′-dipyridyl 6-Aldoxime from Streptomyces caeruleus, Can. J. Chem. 56, 1836–1842. Oka, H., Funaishi, K., Kawamura, K., Nakajima, S., Ookura, A., Suda, H., and Okanishi, M. (1991) Antitumor Glycosides BE-14324 and Their Manufacture with Streptomyces, Jpn. Kokai Tokkyo Koho, 12 pp. Japanese Patent: JP 03081283 A2 19910405 Heisei (in Japanese). Shibano, M., Tsukamoto, D., Fujimoto, R., Masui, Y., Sugimoto, H., and Kusano, G. (2000) Studies on the Constituents of Broussonetia Species. VII. Four New Pyrrolidine Alkaloids, Broussonetines M, O, P, and Q, as Inhibitors of Glycosidase, from Broussonetia kazinoki Sieb, Chem. Pharm. Bull. (Tokyo) 48, 1281–1285. Shibano, M., Nakamura, S., Motoya, N., and Kusano, G. (1999) Studies on the Constituents of Broussonetia Species. V. Two New Pyrrolidine Alkaloids, Broussonetines K and L, as Inhibitors of Glycosidase, from Broussonetia kazinoki SIEB, Chem. Pharm. Bull. (Tokyo) 47, 472–476. Shibano, M., Kitagawa, S., Nakamura, S., Akazawa, N., and Kusano, G. (1997) Studies on the Constituents of Broussonetia Species. II. Six New Pyrrolidine Alkaloids, Broussonetine A, B, E, F and Broussonetinine A and B, as Inhibitors of Glycosidases from Broussonetia kazinoki Sieb, Chem. Pharm. Bull. (Tokyo) 45, 700–705. Watson, A.A., Nash, R.J., Wormald, M.R., Harvey, D.J., Dealler, S., Lees, E., Asano, N., Kizu, H., Kato, A., Griffiths, R.C., et al. (1997) Glycosidase-Inhibiting Pyrrolidine Alkaloids from Hyacinthoides non-scripta, Phytochemistry 46, 255–259. Kocourek, J., Bucharova, V., Buchbauerova, V., Jiracek, V., Kostir, J.A., Kostir, J.V., Kysilka, C., Mostkova, I., Pribylova, A., Ticha, M., et al. (1967) Glycosides. V. Pisatoside. New Alkali-Labile, Nitrogenous β-d-Glucopyranoside of Pea (Pisum sativum), Arch. Biochem. Biophys. 121, 531–532. Tsuchiya, K., Kobayashi, S., Kurokawa, T., Nakagawa, T., Shimada, N., Nakamura, H., Iitaka, Y., Kitagawa, M., and Tatsuta, K. (1995) Gualamycin, a Novel Acaricide Produced by Streptomyces sp. NK11687. II. Structural Elucidation, J. Antibiot. (Tokyo) 48, 630–634. Kato, A., Kano, E., Adachi, I., Molyneux, R.J., Watson, A.A., Nash, R.J., Fleet, G.W.J., Wormald, M.R., Kizu, H., Ikeda, K., et al. (2003) Australine and Related Alkaloids: Easy Structural Confirmation by 13C NMR Spectral Data and Biological Activities, Tetrahedron Asymm 14, 325–331. Leander, K., and Lüning, B. (1967), Studies on Orchidaceae Alkaloids. VII. Structure of a Glucosidic Alkaloid from Malaxis congesta comb. nov. (Rchb. f.), Tetrahedron Lett. 8, 3477–3478. Griffin, W.J., and Lin, D.G. (2000) Chemotaxonomy and Geographical Distribution of Tropane Alkaloids, Phytochemistry 53, 623–637. Jenett-Siems, K., Weigl, R., Boehm, A., Mann, P., Tofern-Reblin, B., Ott, S.C., Ghomian, A., Kaloga, M., Siems, K., Witte, L., et al. (2005) Chemotaxonomy of the Pantropical Genus Merremia (Convolvulaceae) Based on the Distribution of Tropane Alkaloids, Phytochemistry 66, 1448–1464. Molyneux, R.J., Gardner, D.R., James, L.F., and Steven, M. (2002) Polyhydroxy Alkaloids: Chromatographic Analysis, J. Chromatogr. A. 967, 57–74. Dräger, B. (2002) Analysis of Tropane and Related Alkaloids, J. Chromatogr. A. 978, 1–35. Asano, N. (2000) Water Soluble Nortropane Alkaloids in Crude Drugs, Edible Fruits and Vegetables: Biological Activities and Therapeutic Applications, Mech. Ageing Dev. 116, 155–156. Naithani, V., Haider, S., and Kakkar, P. (2001) Plant Toxins: A Historical, Evolutionary, Economic and Toxicological Account, J. Ecophysiol. Occupat. Health. 1, 339–364. Griffiths, R.C., Watson, A.A., Kizu, H., Asano, N., Sharpo, H.J., Jones, M.G., Wormald, M.R., Fleet, G.W.J., and Nash, R.J. (1996) The Isolation from Nicandra physalodes and Identification of the 3-O-β-d-Glucopyranoside of 1α,2β,3α,6α-Tetrahydroxy-nor-tropane (calystegine B1), Tetrahedron Lett. 37, 3207–3208. Asano, N., Kato, A., Yokoyama, Y., Miyauchi, M., Yamamoto, M., Kizu, H., and Matsui, K. (1996) Calystegin N1, a Novel Nortropane Alkaloid with a Bridgehead Amino Group from Hyoscyamus niger: Structure Determination and Glycosidase Inhibitory Activities, Carbohydr. Res. 284, 169–178. Cordell, G.A. (ed). (1998) The Alkaloids: Chemistry and Biology, Vol. 50, Academic Press, New York. Waterman, P.G. (1999) The Chemical Systematics of Alkaloids: A Review Emphasising the Contribution of Robert Hegnauer, Biochem. Syst. Ecol. 27, 395–406. Omari, A., and Garner, P. (2004) Malaria: Severe, Life Threatening, Clin. Evid. 11, 1047–1057. Kumar, A., Katiyar, S.B., Agarwal, A., and Chauhan, P.M. (2003) Perspective in Antimalarial Chemotherapy, Curr. Med. Chem. 10, 1137–1150. Michael, J.P. (2004) Quinoline, Quinazoline and Acridone Alkaloids, Nat. Prod. Rep. 21, 650–668. Von Nussbaum, F. (2003) Stephacidin B—A New Stage of Complexity Within Prenylated Indole Alkaloids from Fungi, Angew. Chem. Int. Ed. Engl. 42, 3068–3071. Daly, J.W., Noimai, N., Kongkathip, B., Kongkathip, N., Wilham, J.M., Garraffo, H.M., Kaneko, T., Spande, T.F., Nimit, Y., Nabhitabhata, J., et al. (2004) Biologically Active Substances from Amphibians: Preliminary Studies on Anurans from Twenty-one Genera of Thailand, Toxicon 44, 805–815. Orjala, J., and Gerwick, W.H. (1997) Two Quinoline Alkaloids from the Caribbean Cyanobacterium Lyngbya majuscula, Phytochemistry 45, 1087–1090. Su, Y.-F., Luo, Y., Guo, C.-Y., and Guo, D.-A. (2004) Two New Quinoline Glycoalkaloids from Echinops gmelinii, J. Asian Nat. Prod. Res. 6, 223–227. Rasulova, K.A., Bessonova, I.A., Yagudaev, M.R., and Yunusov, S.Y. (1987) Haplosinine, a New Furanoquinoline Glycoalkaloid from Haplophyllum perforatum, Khim. Prirod. Soed. 6, 876–879. Dai, J.R., Hallock, Y.F., Cardellina, J.H., II, and Boyd, M.R. (1999) 20-O-β-Glucopyranosyl Camptothecin from Mostuea brunonis: A Potential Camptothecin Pro-drug with Improved Solubility, J. Nat. Prod. 62, 1427–1429. Santavy, F., Maturova, M., Nemeckova, A., Schroter, H., Potensilova, B., and Preininger, H. (1990) VI. Isolation of Alkaloids from a Few Poppy Species, Planta Med. 8, 167–178. Shamma, M., Kelly, M.G., and Podczasy, M.A., Sr. (1969) Thalictrum Alkaloids. VI. (−)-Veronamine, a Glycosidic Benzylisoquinoline, Tetrahedron Lett. 10, 4951–4954. Shoeb, A., Raj, K., Kapil, R.S., and Popli, S.P. (1975) Alangiside, the Monoterpenoid Alkaloidal Glycoside from Alangium lamarckii Thw, J. Chem. Soc. Perkin I 13, 1245–1248. Itoh, A., Baba, Y., Tanahashi, T., and Nagakura, N. (2002) Tetrahydroisoquinolinemonoterpene Glycosides from Cephaelis acuminata, Phytochemistry 59, 91–97. Itoh, A., Tanahashi, T., and Nagakura, N. (1997) Five Tetrahydroisoquinoline-monoterpene Glycosides with a Disaccharide Moiety from Alangium lamarckii, Phytochemistry 46, 1225–1229. Itoh, A., Tanahashi, T., and Nagakura, N. (1996) Acylated Tetrahydroisoquinoline-monoterpene Glucosides from Alangium lamarckii, Phytochemistry 41, 651–656. Itoh, A., Tanahashi, T., Tabata, M., Shikata, M., Sakite, M., Nagai, M., and Nagakura, N. (2001) Tetrahydroisoquinoline-monoterpene and Iridoid Glycosides from Alangium lamarckii, Phytochemistry 56, 623–630. Itoh, A., Tanahashi, T., and Nagakura, N. (1998) Isolation of Two Unusual Tetrahydroisoquinoline-monoterpene Glucosides from Alangium lamarckii as Possible Intermediates in the Nonenzymic Formation of Alangimarine from Alangiside, Heterocycles 48, 499–505. Nagakura, N., Itoh, A., and Tanahashi, T. (1993) Four Tetrahydroisoquinoline-monoterpene Glucosides from Cephaelis ipecacuanha, Phytochemistry 32, 761–765. Hu, S., Xu, S., Yao, X., Cui, C.B., Tezuka, Y., and Kikuchi, T. (1993) Dauricoside, a New Glycosidal Alkaloid Having an Inhibitory Activity Against Blood-Platelet Aggregation, Chem. Pharm. Bull. (Tokyo) 41, 1866–1868. Schmeller, T., and Wink, M. (1998) Utilization of Alkaloids in Modern Medicine, in Alkaloids—Biochemistry, Ecology and Medicinal Applications (Roberts, M., and Wink, M., eds.), pp. 435–459, Plenum Press, New York. Artico, M. (1972) Chemotherapy of Tumors. II. Chemical Review of Natural Neoplastic Agents: Alkaloids, Their Analogs and Other Products Extracted from Plants, Farmaco 27, 683–712. Manno, B.R., and Manno, J.E. (1977) Toxicology of Ipecac: A Review, Clin. Toxicol. 10, 221–242. Itoh, A., Ikuta, Y., Baba, Y., Tanahashi, T., and Nagakura, N. (1999) Ipecac Alkaloids from Cephaelis acuminata, Phytochemistry 52, 1169–1176. Heftmann, E. (1974) Recent Progress in the Biochemistry of Plant Steroids Other Than Sterols (saponins, glycoalkaloids, pregnane derivatives, cardiac glycosides, and sex hormones), Lipids 9, 626–639. Maga, J.A. (1980) Potato Glycoalkaloids, Crit. Rev. Food Sci. Nutr. 12, 371–405. Roddick, J.G. (1996) Steroidal Glycoalkaloids: Nature and Consequences of Bioactivity, Adv. Exp. Med. Biol. 404, 277–295. Friedman, M. (2002) Tomato Glycoalkaloids: Role in the Plant and in the Diet, J. Agric. Food Chem. 50, 5751–5780. Korpan, Y.I., Nazarenko, E.A., Skryshevskaya, I.V., Martelet, C., Jaffrezic-Renault, N., and El’skaya, A.V. (2004) Potato Glycoalkaloids: True Safety or False Sense of Security, Trends Biotechnol. 22, 147–151. Kuc, J. (1975) Teratogenic Constituents of Potatoes, Recent Adv. Phytochem. 9, 139–150. Wang, S., Panter, K.E., Gaffield, W., Evans, R.C., and Bunch, T.D. (2005) Effects of Steroidal Glycoalkaloids from Potatoes (Solanum tuberosum) on in vitro Bovine Embryo Development, Anim. Reprod. Sci. 85, 243–250. Lee, K.R., Kozukue, N., Han, J.S., Park, J.H., Chang, E.Y., Baek, E.J., Chang, J.S., and Friedman, M. (2004) Glycoalkaloids and Metabolites Inhibit the Growth of Human Colon (HT29) and Liver (HepG2) Cancer Cells, J. Agric. Food Chem. 52, 2832–2839. Skuladottir, H., Tjoenneland, A., Overvad, K., Stripp, C., Christensen, J., Raaschou-Nielsen, O., and Olsen, J.H. (2004) Does Insufficient Adjustment for Smoking Explain the Preventive Effects of Fruit and Vegetables on Lung Cancer? Lung Cancer 45, 1–10. Mannisto, S., Dixon, L.B., Balder, H.F., Virtanen, M.J., Krogh, V., Khani, B.R., Berrino, F., Brandt, P.A., Hartman, A.M., Pietinen, P., et al. (2005) Dietary Patterns and Breast Cancer Risk: Results from Three Cohort Studies in the DIETSCAN Project, Cancer Causes Control 16, 725–733. Friedman, M., Lee, K.R., Kim, H.J., Lee, I.S., and Kozukue, N. (2005) Anticarcinogenic Effects of Glycoalkaloids from Potatoes Against Human Cervical, Liver, Lymphoma, and Stomach Cancer Cells, J. Agric. Food Chem. 53, 6162–6169, 8420. Friedman, M. (2004) Analysis of Biologically Active Compounds in Potatoes (Solanum tuberosum), Tomatoes (Lycopersicon esculentum), and Jimson Weed (Datura stramonium) Seeds, J. Chromatogr. A. 1054, 143–155. Cham, B.E., Gilliver, M., and Wilson, L. (1987) Antitumor Effects of Glycoalkaloids Isolated from Solanum sodomaeum, Planta Med. 53, 34–36. Fukuhara, K., Shimizu, K., and Kubo, I. (2004) Arudonine, an Allelopathic Steroidal Glycoalkaloid from the Root Bark of Solanum arundo Mattei, Phytochemistry 65, 1283–1286. Ye, W.-C., Wang, H., Zhao, S.-X., and Che, C.-T. (2001) Steroidal Glycoside and Glycoalkaloid from Solanum lyratum, Biochem. Syst. Ecol. 29, 421–423. Fujiwara, Y., Takaki, A., Uehara, Y., Ikeda, T., Okawa, M., Yamauchi, K., Ono, M., Yoshimitsu, H., and Nohara, T. (2004) Tomato Steroidal Alkaloid Glycosides, Esculeosides A and B, from Ripe Fruits, Tetrahedron 60, 4915–4920. Yahara, S., Uda, N., Yoshio, E., and Yae, E. (2004) Steroidal Alkaloid Glycosides from Tomato (Lycopersicon esculentum), J. Nat. Prod. 67, 500–502. Amir, M., and Kumar, S. (2004) Possible Industrial Applications of Genus Solanum in Twenty-first Century: A Review, J. Scient. Indust. Res. 63, 116–124. Pathirana, C., Jensen, P.R., Dwight, R., and Fenical, W. (1992) Rare Phenazine l-Quinovose Esters from a Marine Actinomycete, J. Org. Chem. 57, 740–742. Vural, N., and Sardas, S. (1984) Biological Activities of Broad Bean (Vicia faba L.) Extracts Cultivated in South Anatolia in Favism Sensitive Subjects, Toxicology 31, 175–179. Lattanzio, V., Bianco, V.V., Crivelli, G., and Miccolis, V. (1983) Variability of Amino Acids, Protein, Vicine and Convicine in Vicia faba (L), J. Food Sci. 48, 992–993. Chaudhuri, R.K., Sticher, O., and Winkler, T. (1981) Structures of Two Novel Monoterpene Alkaloid Glucosides from Lonicera xylosteum L, Tetrahedron Lett. 22, 559–562. Chaudhuri, R.K., Sticher, O., and Winkler, T. (1980) Xylostosidine: The First of a New Class of Monoterpene Alkaloid Glycosides from Lonicera xylosteum, Helv. Chim. Acta 63, 1045–1047. Nemeckova, A., Cross, A.D., and Santavy, F. (1967) Occurrence of Isorheagenine Glycoside, Naturwissenschaften 54, 45. ElBitar, H., Nguyen, V.H., Gramain, A., Sévenet, T., and Bodo, B. (2004) Daphcalycinosidines A and B, New Iridoid-Alkaloids from Daphniphyllum calycinum, Tetrahedron Lett. 45, 515–518. ElBitar, H., Nguyen, V.H., Gramain, A., Sevenet, T., and Bodo, B. (2004) New Alkaloids from Daphniphyllum calycinum, J. Nat. Prod. 67, 1094–1099. Kosuge, T., Tsuji, K., and Hirai, K. (1982) Isolation of Neosurugatoxin from the Japanese Ivory Shell, Babylonia japonica, Chem. Pharm. Bull. (Tokyo) 30, 3255–3259. Akunyili, D.N., and Akubue, P.I. (1986) Schumanniofoside, the Antisnake Venom Principle from the Stem Bark of Schumanniophyton magnificum Harms, J. Ethnopharmacol. 18, 167–172. Bourquelot, E., and Herissey, H. (1907) Bakankosine, a New Glucoside Hydrolyzed by Emulsin, Found in the Seeds of a Strychnos from Madagascar, Compt. Rend. Acad. Sci. Paris 144, 575–577. Tietze, L.F. (1976) Iridoids. VII. Synthesis and Structural Proof of Bakankosine, Tetrahedron Lett. 29, 2535–2538. Klohs, M.W., Draper, M.D., Keller, F., Malesh, W., and Petracek, F.J. (1953) Alkaloids of Veratrum eschscholtzii. I. The Glycosides, J. am. Chem. Soc. 75, 2133–2135. Taskhanova, E.M., and Shakirov, R. (1981) Veratrum lobelianum Alkaloids, Khim. Prirod. Soed. (USSR) 3, 404–405. Iwadare, S., Shizuri, Y., Sasaki, K., and Hirata, Y. (1974) Isolation and Structure of Trichotomine and Trichotomine G1, Tetrahedron 30, 4105–4111.