Associations between the orexin (hypocretin) receptor 2 gene polymorphism Val308Ile and nicotine dependence in genome-wide and subsequent association studies

Molecular Brain - Tập 8 - Trang 1-17 - 2015
Daisuke Nishizawa1, Shinya Kasai1, Junko Hasegawa1, Naomi Sato2,3, Hidetaka Yamada3, Fumihiko Tanioka4, Makoto Nagashima5, Ryoji Katoh5, Yasuo Satoh6, Megumi Tagami6, Hiroshi Ujike7,8, Norio Ozaki9,8, Toshiya Inada10,8, Nakao Iwata11,8, Ichiro Sora1,12,8, Masaomi Iyo13,8, Mitsuhiko Yamada14,8, Naoki Kondo15,8, Moo-Jun Won16,8, Nobuya Naruse17,8, Kumi Uehara-Aoyama18,8, Masanari Itokawa19, Kazutaka Ohi20,21, Ryota Hashimoto20,22, Kumpei Tanisawa23,24, Tomio Arai25, Seijiro Mori26, Motoji Sawabe27, Makiko Naka-Mieno28, Yoshiji Yamada29, Miki Yamada30, Noriko Sato30, Masaaki Muramatsu30, Masashi Tanaka23,31, Yoko Irukayama-Tomobe32, Yuki C. Saito33, Takeshi Sakurai33, Masakazu Hayashida34, Haruhiko Sugimura3, Kazutaka Ikeda1,8
1Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
2Department of Clinical Nursing, Hamamatsu University School of Medicine, Hamamatsu, Japan
3Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
4Department of Pathology, Iwata City Hospital, Iwata, Japan
5Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
6Department of Anesthesiology, Toho University Sakura Medical Center, Sakura, Japan
7Ujike Nishiguchi Clinic, Okayama, Japan
8Japanese Genetics Initiative for Drug Abuse (JGIDA), Tokyo, Japan
9Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
10Department of Psychiatry, Seiwa Hospital, Institute of Neuropsychiatry, Tokyo, Japan
11Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
12Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
13Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba, Japan
14Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
15Seimei Hospital, Fuji City, Japan
16Koujin Hospital, Nagoya, Japan
17Saitama Seishin-iryo Center, Kita-adachi, Japan
18Kanagawa Psychiatric Center, Serigaya Hospital, Kanagawa, Japan
19Schizophrenia and Depression Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
20Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
21National Hospital Organization, Yamato Mental-Medical Center, Nara, Japan
22Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University, Chiba University, and Fukui University School of Medicine, Osaka, Japan
23Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
24Graduate School of Sport Sciences, Waseda University, Tokyo, Japan
25Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
26Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
27Molecular Pathophysiology, Department of Molecular-genetic Sciences, Division of Biomedical Laboratory Sciences, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
28Department of Medical Informatics, Center for Information, Jichi Medical University, Shimotsuke, Japan
29Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
30Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
31Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
32International Institute of Integrative Sleep Medicine, Ibaraki, Japan
33Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Ishikawa, Japan
34Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan

Tóm tắt

Many genetic and environmental factors are involved in the etiology of nicotine dependence. Although several candidate gene variations have been reported by candidate gene studies or genome-wide association studies (GWASs) to be associated with smoking behavior and the vulnerability to nicotine dependence, such studies have been mostly conducted with subjects with European ancestry. However, genetic factors have rarely been investigated for the Japanese population as GWASs. To elucidate genetic factors involved in nicotine dependence in Japanese, the present study comprehensively explored genetic contributors to nicotine dependence by using whole-genome genotyping arrays with more than 200,000 markers in Japanese subjects. The subjects for the GWAS and replication study were 148 and 374 patients, respectively. A two-stage GWAS was conducted using the Fagerström Test for Nicotine Dependence (FTND), Tobacco Dependence Screener (TDS), and number of cigarettes smoked per day (CPD) as indices of nicotine dependence. For the additional association analyses, patients who underwent major abdominal surgery, patients with methamphetamine dependence/psychosis, and healthy subjects with schizotypal personality trait data were recruited. Autopsy specimens with various diseases were also evaluated. After the study of associations between more than 200,000 marker single-nucleotide polymorphisms (SNPs) and the FTND, TDS, and CPD, the nonsynonymous rs2653349 SNP (located on the gene that encodes orexin [hypocretin] receptor 2) was selected as the most notable SNP associated with FTND, with a p value of 0.0005921 in the two-stage GWAS. This possible association was replicated for the remaining 374 samples. This SNP was also associated with postoperative pain, the initiation of methamphetamine use, schizotypal personality traits, and susceptibility to goiter. Although the p value did not reach a conventional genome-wide level of significance in our two-stage GWAS, we obtained significant results in the subsequent analyses that suggest that the rs2653349 SNP (Val308Ile) could be a genetic factor that is related to nicotine dependence and possibly pain, schizotypal personality traits, and goiter in the Japanese population.

Tài liệu tham khảo

Organization WH. WHO report on the global tobacco epidemic, 2011. 2011. Siahpush M, McNeill A, Hammond D, Fong GT. Socioeconomic and country variations in knowledge of health risks of tobacco smoking and toxic constituents of smoke: results from the 2002 International Tobacco Control (ITC) Four Country Survey. Tob Control. 2006;15 Suppl 3:iii65–70. doi:10.1136/tc.2005.013276. Organization WH. WHO global report: mortality attributable to tobacco. 2011. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11), e442. doi:10.1371/journal.pmed.0030442. Li MD, Cheng R, Ma JZ, Swan GE. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction. 2003;98(1):23–31. Vink JM, Willemsen G, Boomsma DI. Heritability of smoking initiation and nicotine dependence. Behav Genet. 2005;35(4):397–406. doi:10.1007/s10519-004-1327-8. Lessov-Schlaggar CN, Pergadia ML, Khroyan TV, Swan GE. Genetics of nicotine dependence and pharmacotherapy. Biochem Pharmacol. 2008;75(1):178–95. doi:10.1016/j.bcp.2007.08.018. Batra V, Patkar AA, Berrettini WH, Weinstein SP, Leone FT. The genetic determinants of smoking. Chest. 2003;123(5):1730–9. MacLeod SL, Chowdhury P. The genetics of nicotine dependence: relationship to pancreatic cancer. World J Gastroenterol. 2006;12(46):7433–9. Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE. Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet. 2007;8:10. doi:10.1186/1471-2156-8-10. Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE, et al. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch Gen Psychiatry. 2008;65(6):683–93. doi:10.1001/archpsyc.65.6.683. Uhl GR, Drgon T, Johnson C, Ramoni MF, Behm FM, Rose JE. Genome-wide association for smoking cessation success in a trial of precessation nicotine replacement. Mol Med. 2010;16(11–12):513–26. doi:10.2119/molmed.2010.00052. Drgon T, Montoya I, Johnson C, Liu QR, Walther D, Hamer D, et al. Genome-wide association for nicotine dependence and smoking cessation success in NIH research volunteers. Mol Med. 2009;15(1–2):21–7. doi:10.2119/molmed.2008.00096. Drgon T, Johnson C, Walther D, Albino AP, Rose JE, Uhl GR. Genome-wide association for smoking cessation success: participants in a trial with adjunctive denicotinized cigarettes. Mol Med. 2009;15(7–8):268–74. doi:10.2119/molmed.2009.00040. Liu YZ, Pei YF, Guo YF, Wang L, Liu XG, Yan H, et al. Genome-wide association analyses suggested a novel mechanism for smoking behavior regulated by IL15. Mol Psychiatry. 2009;14(7):668–80. doi:10.1038/mp.2009.3. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet. 2010;42(5):436–40. doi:10.1038/ng.572. Consortium TTaG. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441–7. doi:10.1038/ng.571. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42(5):448–53. doi:10.1038/ng.573. Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet. 2007;16(1):24–35. doi:10.1093/hmg/ddl441. Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML, et al. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(4):453–66. doi:10.1002/ajmg.b.30828. Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, Cichon S et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6(8). doi:10.1371/journal.pgen.1001053. Caporaso N, Gu F, Chatterjee N, Sheng-Chih J, Yu K, Yeager M, et al. Genome-wide and candidate gene association study of cigarette smoking behaviors. PLoS ONE. 2009;4(2), e4653. doi:10.1371/journal.pone.0004653. Lind PA, Macgregor S, Vink JM, Pergadia ML, Hansell NK, de Moor MH, et al. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations. Twin Res Hum Genet. 2010;13(1):10–29. doi:10.1375/twin.13.1.10. Yoon D, Kim YJ, Cui WY, Van der Vaart A, Cho YS, Lee JY, et al. Large-scale genome-wide association study of Asian population reveals genetic factors in FRMD4A and other loci influencing smoking initiation and nicotine dependence. Hum Genet. 2012;131(6):1009–21. doi:10.1007/s00439-011-1102-x. Iijima Y, Sasaki J, Bando N, Asai T, Mouri I, Tanno Y. Development of a Japanese Version of the Schizotypal Personality Questionnaire and Factor Structure of Schizotypy. Koudouryouhoukenkyu. 2010;36:29–41. Someya T, Sasaki T, Takahashi S. Reliability and validity of schizotypal personality questionnaire. The Proceeding of the 32nd Scientific Meeting of the University Health Care in Japan. 1994:286–90. Raine A. The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr Bull. 1991;17(4):555–64. Ma X, Sun J, Yao J, Wang Q, Hu X, Deng W, et al. A quantitative association study between schizotypal traits and COMT, PRODH and BDNF genes in a healthy Chinese population. Psychiatry Res. 2007;153(1):7–15. doi:10.1016/j.psychres.2007.02.003. Raine A, Reynolds C, Lencz T, Scerbo A, Triphon N, Kim D. Cognitive-perceptual, interpersonal, and disorganized features of schizotypal personality. Schizophr Bull. 1994;20(1):191–201. Ma C, Quesnelle KM, Sparano A, Rao S, Park MS, Cohen MA, et al. Characterization CSMD1 in a large set of primary lung, head and neck, breast and skin cancer tissues. Cancer Biol Ther. 2009;8(10):907–16. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95(1):322–7. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85. Blanco M, Lopez M, Garcia-Caballero T, Gallego R, Vazquez-Boquete A, Morel G, et al. Cellular localization of orexin receptors in human pituitary. J Clin Endocrinol Metab. 2001;86(4):1616–9. Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. Vitam Horm. 2012;89:111–33. doi:10.1016/B978-0-12-394623-2.00007-X. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003;23(8):3106–11. LeSage MG, Perry JL, Kotz CM, Shelley D, Corrigall WA. Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology (Berl). 2010;209(2):203–12. doi:10.1007/s00213-010-1792-0. Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front Neurosci. 2014;8:57. doi:10.3389/fnins.2014.00057. Rainero I, Gallone S, Valfre W, Ferrero M, Angilella G, Rivoiro C, et al. A polymorphism of the hypocretin receptor 2 gene is associated with cluster headache. Neurology. 2004;63(7):1286–8. Schurks M, Kurth T, Geissler I, Tessmann G, Diener HC, Rosskopf D. Cluster headache is associated with the G1246A polymorphism in the hypocretin receptor 2 gene. Neurology. 2006;66(12):1917–9. doi:10.1212/01.wnl.0000215852.35329.34. Rainero I, Rubino E, Valfre W, Gallone S, De Martino P, Zampella E, et al. Association between the G1246A polymorphism of the hypocretin receptor 2 gene and cluster headache: a meta-analysis. J Headache Pain. 2007;8(3):152–6. doi:10.1007/s10194-007-0383-x. Chiou LC, Lee HJ, Ho YC, Chen SP, Liao YY, Ma CH, et al. Orexins/hypocretins: pain regulation and cellular actions. Curr Pharm Des. 2010;16(28):3089–100. Borgland SL, Labouebe G. Orexin/hypocretin in psychiatric disorders: present state of knowledge and future potential. Neuropsychopharmacology. 2010;35(1):353–4. doi:10.1038/npp.2009.119. de Leon J, Diaz FJ. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res. 2005;76(2–3):135–57. doi:10.1016/j.schres.2005.02.010. Kudoh A, Ishihara H, Matsuki A. Current perception thresholds and postoperative pain in schizophrenic patients. Reg Anesth Pain Med. 2000;25(5):475–9. doi:10.1053/rapm.2000.7617. Erdogan MF. Thiocyanate overload and thyroid disease. Biofactors. 2003;19(3–4):107–11. Brauer VF, Below H, Kramer A, Fuhrer D, Paschke R. The role of thiocyanate in the etiology of goiter in an industrial metropolitan area. Eur J Endocrinol. 2006;154(2):229–35. doi:10.1530/eje.1.02076. Bertelsen JB, Hegedus L. Cigarette smoking and the thyroid. Thyroid. 1994;4(3):327–31. Hegedus L, Karstrup S, Veiergang D, Jacobsen B, Skovsted L, Feldt-Rasmussen U. High frequency of goitre in cigarette smokers. Clin Endocrinol (Oxf). 1985;22(3):287–92. Rainero I, Gallone S, Rubino E, Ponzo P, Valfre W, Binello E, et al. Haplotype analysis confirms the association between the HCRTR2 gene and cluster headache. Headache. 2008;48(7):1108–14. doi:10.1111/j.1526-4610.2008.01080.x. Nho K, Corneveaux JJ, Kim S, Lin H, Risacher SL, Shen L, et al. Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment. Mol Psychiatry. 2013;18(7):781–7. doi:10.1038/mp.2013.24. Kobayashi D, Nishizawa D, Takasaki Y, Kasai S, Kakizawa T, Ikeda K, et al. Genome-wide association study of sensory disturbances in the inferior alveolar nerve after bilateral sagittal split ramus osteotomy. Mol Pain. 2013;9:34. doi:10.1186/1744-8069-9-34. Ioannidis JP, Thomas G, Daly MJ. Validating, augmenting and refining genome-wide association signals. Nat Rev Genet. 2009;10(5):318–29. doi:10.1038/nrg2544. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95–108. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516–7. Sato N, Kageyama S, Chen R, Suzuki M, Mori H, Tanioka F, et al. Association between neuropeptide Y receptor 2 polymorphism and the smoking behavior of elderly Japanese. J Hum Genet. 2010;55(11):755–60. doi:10.1038/jhg.2010.108. Ella E, Sato N, Nishizawa D, Kageyama S, Yamada H, Kurabe N, et al. Association between dopamine beta hydroxylase rs5320 polymorphism and smoking behaviour in elderly Japanese. J Hum Genet. 2012;57(6):385–90. doi:10.1038/jhg.2012.40. Hayashida M, Nagashima M, Satoh Y, Katoh R, Tagami M, Ide S, et al. Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics. 2008;9(11):1605–16. doi:10.2217/14622416.9.11.1605. Nishizawa D, Nagashima M, Katoh R, Satoh Y, Tagami M, Kasai S, et al. Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery. PLoS ONE. 2009;4(9), e7060. doi:10.1371/journal.pone.0007060. Ujike H, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, et al. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J. 2003;3(4):242–7. doi:10.1038/sj.tpj.6500189. Ujike H. Japanese Genetics Initiative for Drug Abuse (JGIDA). Nihon Shinkei Seishin Yakurigaku Zasshi. 2004;28(5):299–302. Sawabe M, Arai T, Kasahara I, Esaki Y, Nakahara K, Hosoi T, et al. Developments of geriatric autopsy database and Internet-based database of Japanese single nucleotide polymorphisms for geriatric research (JG-SNP). Mech Ageing Dev. 2004;125(8):547–52. doi:10.1016/j.mad.2004.06.005. Ujike H, Kishimoto M, Okahisa Y, Kodama M, Takaki M, Inada T, et al. Association Between 5HT1b Receptor Gene and Methamphetamine Dependence. Curr Neuropharmacol. 2011;9(1):163–8. doi:10.2174/157015911795017137. Kishi T, Kitajima T, Kawashima K, Okochi T, Yamanouchi Y, Kinoshita Y, et al. Association Analysis of Nuclear Receptor Rev-erb Alpha Gene (NR1D1) and Japanese Methamphetamine Dependence. Curr Neuropharmacol. 2011;9(1):129–32. doi:10.2174/157015911795017065. Kishi T, Kitajima T, Tsunoka T, Okumura T, Kawashima K, Okochi T, et al. Lack of association between prokineticin 2 gene and Japanese methamphetamine dependence. Curr Neuropharmacol. 2011;9(1):133–6. doi:10.2174/157015911795016994. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict. 1991;86(9):1119–27. Kawakami N, Takatsuka N, Inaba S, Shimizu H. Development of a screening questionnaire for tobacco/nicotine dependence according to ICD-10, DSM-III-R, and DSM-IV. Addict Behav. 1999;24(2):155–66. Nishizawa D, Hayashida M, Nagashima M, Koga H, Ikeda K. Genetic polymorphisms and human sensitivity to opioid analgesics. Methods Mol Biol. 2010;617:395–420. doi:10.1007/978-1-60327-323-7_29. Hashimoto R, Ikeda M, Ohi K, Yasuda Y, Yamamori H, Fukumoto M, et al. Genome-wide association study of cognitive decline in schizophrenia. A J Psychiatry. 2013;170(6):683–4. doi:10.1176/appi.ajp.2013.12091228. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. doi:S0002-9297(07)61352-4. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;25(2):263–5. doi:10.1093/bioinformatics/bth457. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300. Storey J. The positive False Discovery Rate: a Bayesian interpretation and the q-value. Ann Statist. 2003;31(6):2013–35. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9. doi:10.1038/nmeth0410-248. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. Cohen J. Statistical power analysis for the behavioral sciences (revised edition). New York: Academic; 1977.