Association of urinary bisphenol a concentration with type-2 diabetes mellitus
Tóm tắt
Bisphenol A as an endocrine-disrupting chemical is widely used chemical in the manufacture of polycarbonate plastics and epoxy resin and has become ubiquitous environmental contaminants. Human exposure to Bisphenol A is widespread and recent studies have been shown to be associated with a higher risk for self-reported adverse health outcomes that may lead to insulin resistance and the development of type-2 diabetes mellitus. In this context, we sought to confirm the association between Bisphenol A and diabetes in a community-based analysis of Bisphenol A urinary concentrations investigation in adult population of Iran. Regression models were adjusted for age, sex, Body Mass Index, serum triglyceride level and serum cholesterol level and serum creatinine concentration. Main outcomes were reported diagnoses of diabetes that defined according the latest American Diabetes Association guidelines. The median age of the 239 participants was 51.65 years and 119 people had type-2 diabetes mellitus. Urinary Bisphenol A was categorized into two groups based on the median for Bisphenol A (≤0. 85 to >0.85 μg/L). The results of statistical analysis revealed a clear association between hypertension, and type 2 diabetes (P < 0.05). The multi variable-adjusted odds ratio for type-2 diabetes mellitus associated with the group 1 (referent), of urinary Bisphenol A was 57.6 (95% confidence interval: 21.10-157.05; P-value < 0.001). A positive correlation between HbA1c and urinary BPA concentration was observed (r = 0.63, P = 0.001). Urinary Bisphenol A levels are found to be associated with diabetes independent of traditional diabetes risk factors. Higher Bisphenol A exposure, reflected in higher urinary concentrations of Bisphenol A, is consistently associated with diabetes in the general adult population of the Iran. Studies to clarify the mechanisms of these associations are urgently needed.
Tài liệu tham khảo
Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, Nadal A: Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreaticα-cells through a nonclassical membrane estrogen receptor within intact islets of langerhans. Environ Health Perspect 2005, 113: 969.
Sajiki J, Yonekubo J: Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere 2003, 51: 55–62.
Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T: Endocrine disruptingnonylphenols are ubiquitous in food. EnvironSciTechnol 2002, 36: 1676–1680.
Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL: Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 2005, 113: 391.
Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL: Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 2008, 116: 39.
Becker K, Güen T, Seiwert M, Conrad A, Pick-Fuß H, Müller J, Wittassek M, Schulz C, Kolossa-Gehring M, GerES IV: Phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Health 2009, 212: 685–692.
Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, Lanphear BP: Prenatal bisphenolA exposure and early childhood behavior. Environ Health Perspect 1945, 2009: 117.
He Y, Miao M, Herrinton LJ, Wu C, Yuan W, Zhou Z, Li D-K: Bisphenol A levels in blood and urine in a Chinese population and the personal factors affecting thelevels. Environ Res 2009, 109: 629–633.
HealthCanada: Environmental and workplace health. Report on human Bi omoni toring of environmental chemicals in Canada. Results of the Canadian health masures survey cycle 1 (2007–2009). 2010.
Lee YJ, Ryu H-Y, Kim H-K, Min CS, Lee JH, Kim E, Nam BH, Park JH, Jung JY, Jang DD: Maternal and fetal exposure to bisphenolA in Korea. Reprod Toxicol 2008, 25: 413–419.
Matsumoto A, Kunugita N, Kitagawa K, Isse T, Oyama T, Foureman GL, Morita M, Kawamoto T: Bisphenol A levels in human urine. Environ Health Perspect 2003, 111: 101.
Teitelbaum S, Britton J, Calafat A, Ye X, Silva M, Reidy J, Galvez M, Brenner B, Wolff M: Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res 2008, 106: 257–269.
Völkel W, Kiranoglu M, Fromme H: Determination of free and total bisphenol A in human urine to assess daily uptake as a basis for a valid risk assessment. Toxicol Letters 2008, 179: 155–162.
Völkel W, Kiranoglu M, Fromme H: Determination of free and total bisphenol A in urine of infants. Environ Res 2011, 111: 143–148.
Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA, Chelimo C, Godbold J, Biro F, Kushi LH, Pfeiffer CM: Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect 2007, 115: 116.
Yang YJ, Hong Y–C, Oh S-Y, Park M-S, Kim H, Leem J–H, Ha E–H: Bisphenol A exposure is associated with oxidative stress and inflammation in postmenopausalwomen. Environ Res 2009, 109: 797–801.
Ye X, Kuklenyik Z, Needham LL, Calafat AM: Quantification of urinary conjugates of bisphenol A, 2, 5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction–high performance liquid chromatography–tandem mass spectrometry. AnalBioanalChem 2005, 383: 638–644.
Rivas A, Fernandez MF, Cerrillo I, Ibarluzea J, Olea‒Serrano MF, Pedraza V, Olea N: Human exposure to endocrine disrupters: standardisation of a marker of estrogenic exposure in adipose tissue. Apmis 2001, 109: S189-S202.
Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A: The estrogenic effect of bisphenol A disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect 2006, 114: 106.
McLachlan JA: Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 2001, 22: 319–341.
Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D: Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinol-Philadelphia 1993, 132: 2279–2279.
Nagel SC, vomSaal FS, Thayer KA, Dhar MG, Boechler M, Welshons WV: Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogensbisphenol A and octylphenol. Environ Health Perspect 1997, 105: 70.
Petersen DN, Tkalcevic GT, Koza-Taylor PH, Turi TG, Brown TA: Identification of estrogen receptor β2, a functional variant of estrogen receptor βexpressed in normal rat tissues. Endocrinology 1998, 139: 1082–1092.
Steinmetz R, Mitchner NA, Grant A, Allen DL, Bigsby RM, Ben-Jonathan N: The xenoestrogenbisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology 1998, 139: 2741–2747.
Quesada I, Fuentes E, Viso-León MC, Soria B, Ripoll C, Nadal A: Low doses of the endocrine disruptor bisphenol-A and the native hormone 17β-estradiol rapidly activate transcription factor CREB. FASEB J 2002, 16: 1671–1673.
Nadal A, Alonso‒Magdalena P, Soriano S, Ropero AB, Quesada I: The role of oestrogens in the adaptation of islets to insulin resistance. J Physiol 2009, 587: 5031–5037.
Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB: The pancreaticβ-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 2009, 304: 63–68.
Silver MK, O’Neill MS, Sowers MR, Park SK: Urinary bisphenol A and type-2 diabetes in US adults: data from NHANES 2003–2008. PLoS ONE 2011, 6: 26868.
Ning G, Bi Y, Wang T, Xu M, Xu Y, Huang Y, Li M, Li X, Wang W, Chen Y: Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chinese adultsA cross-sectional analysis. Ann Intern Med 2011, 155: 368–374.
Kim K, Park H: Association between urinary concentrations of bisphenol A and type 2 diabetes in Korean adults: a population-based cross-sectional study. Int J Hyg Environ Health 2013, 216: 467–471.
Shankar A, Teppala S: Relationship between urinary bisphenol A levels and diabetes mellitus. J Clin Endocrinol Metab 2011, 96: 3822–3826.
Mahalingaiah S, Meeker JD, Pearson KR, Calafat AM, Ye X, Petrozza J, Hauser R: Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ Health Perspect 2008, 116(2):173–178.
Moors S, Blaszkewicz M, Bolt HM, Degen GH: Simultaneous determination ofdaidzein, equol, genistein and bisphenol A in human urine by a fast and simple method using SPE and GC‒MS. MolNutr Food Res 2007, 51: 787–798.
Carwile JL, Michels KB: Urinary bisphenol A and obesity: NHANES 2003–2006. Environ Res 2011, 111: 825–830.
Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D: Association of urinary bisphenolA concentration with medical disorders and laboratory abnormalities in adults. JAMA: J Am Med Assoc 2008, 300: 1303–1310.
Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS: Association of urinarybisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS ONE 2010, 5: 8673.
International Expert Committee: International expert committee reporton the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32: 1327–1334.
American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care 2011, 34(Suppl1):S62-S69.
Kilpatrick ES, Bloomgarden ZT, Zimmet PZ: Is haemoglobin A1c a step forward for diagnosing diabetes. BMJ 2009, 339: b4432.