Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự liên quan của những thay đổi trong methyl hóa DNA bạch cầu với việc tiêu thụ folate qua chế độ ăn và rượu trong nghiên cứu EPIC
Tóm tắt
Có bằng chứng ngày càng tăng cho thấy folate, một thành phần quan trọng của chuyển hóa một-carbon, điều chỉnh epigenome. Rượu, có thể làm gián đoạn sự hấp thụ folate, cũng được biết đến là ảnh hưởng đến epigenome. Chúng tôi đã điều tra mối liên hệ giữa chế độ ăn uống folate và lượng rượu tiêu thụ đối với mức độ methyl hóa DNA bạch cầu trong nghiên cứu Điều tra Châu Âu về Ung thư và Dinh dưỡng (EPIC). Hồ sơ methyl hóa DNA toàn bộ bộ gen bạch cầu tại khoảng 450.000 vị trí CpG đã được thu thập bằng Illumina HumanMethylation 450K BeadChip với khoảng 450 phụ nữ tham gia kiểm soát trong một nghiên cứu trường hợp - đối chứng về ung thư vú nằm trong tập đoàn EPIC. Sau khi xử lý dữ liệu bằng phân tích biến thế thay thế để giảm biến thiên hệ thống, các mối liên hệ giữa methyl hóa DNA với chế độ ăn uống folate và lượng rượu tiêu thụ, được đánh giá qua bảng hỏi chế độ ăn, đã được điều tra bằng các mô hình tuyến tính theo vị trí CpG. Các vùng cụ thể của methylome đã được khám phá bằng phân tích vùng methyl hóa khác nhau (DMR) và hồi quy lasso ghép (FL). Phân tích DMR kết hợp kết quả từ phân tích theo tính năng cho một nhiễm sắc thể cụ thể và sử dụng khoảng cách giữa các tính năng làm trọng số, trong khi hồi quy FL kết hợp hai hình phạt để khuyến khích tính khan hiếm của các tính năng đơn lẻ và sự khác biệt giữa hai tính năng liên tiếp. Sau khi điều chỉnh các kiểm định đa, việc tiêu thụ folate qua chế độ ăn không có liên quan với mức độ methyl hóa tại bất kỳ vị trí methyl hóa DNA nào, trong khi những liên kết yếu đã được quan sát giữa lượng rượu tiêu thụ và mức độ methyl hóa tại các vị trí CpG cg03199996 và cg07382687, với qval = 0.029 và qval = 0.048, tương ứng. Thú vị thay, phân tích DMR đã tiết lộ tổng cộng 24 và 90 vùng liên quan đến chế độ ăn folate và rượu, tương ứng. Đối với việc tiêu thụ rượu, 6 trong số 15 DMR có ý nghĩa nhất được xác định thông qua FL. Lượng rượu tiêu thụ có liên quan đến mức độ methyl hóa tại hai vị trí CpG. Bằng chứng từ phân tích DMR và FL cho thấy rằng folate qua chế độ ăn và lượng rượu tiêu thụ có thể liên quan đến các vùng gen với hoạt động ức chế u như các gen GSDMD và HOXA5. Những kết quả này phù hợp với giả thuyết rằng các cơ chế epigenetic đóng một vai trò trong mối quan hệ giữa folate và rượu, mặc dù cần có thêm các nghiên cứu để làm rõ tầm quan trọng của các cơ chế này trong ung thư.
Từ khóa
#Folate #alcohol #DNA methylation #epigenetics #EPIC studyTài liệu tham khảo
Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, Herceg Z. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics. 2016;8(5):599–618. https://doi.org/10.2217/epi-2016-0001.
Ambatipudi S, Horvath S, Perrier F, Cuenin C, Hernandez-Vargas H, Le Calvez-Kelm F, Herceg Z. DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur J Cancer. 2017;75:299–307. https://doi.org/10.1016/j.ejca.2017.01.014
Ba Y, Yu H, Liu F, Geng X, Zhu C, Zhu Q, Zhang Y. Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. Eur J Clin Nutr. 2011;65(4):480–85. https://doi.org/10.1038/ejcn.2010.294.
Baglietto L, English DR, Gertig DM, Hopper JL, Giles GG. Does dietary folate intake modify effect of alcohol consumption on breast cancer risk? Prospective cohort study. Bmj. 2005;331(7520):807. https://doi.org/10.1136/bmj.38551.446470.06.
Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98. https://doi.org/10.1016/j.ygeno.2011.07.007.
Bolstad B. M. Probe level quantile normalization of high density oligonucleotide array data. 2001. Retrieved from http://bmbolstad.com/stuff/qnorm.pdf
Bouckaert KP, Slimani N, Nicolas G, Vignat J, Wright AJ, Roe M, Finglas PM. Critical evaluation of folate data in European and international databases: recommendations for standardization in international nutritional studies. Mol Nutr Food Res. 2011;55(1):166–80. https://doi.org/10.1002/mnfr.201000391.
Candès EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted ℓ 1 minimization. J Fourier Anal Appl. 2008;14(5):877–905. https://doi.org/10.1007/s00041-008-9045-x.
Chen M, Bresnick AR, O'Connor KL. Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene. 2012;32:3754. https://doi.org/10.1038/onc.2012.383 https://www.nature.com/articles/onc2012383#supplementary-information.
Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Weksberg R. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203–09. https://doi.org/10.4161/epi.23470.
Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, Poole C. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39(2):417–20. https://doi.org/10.1093/ije/dyp334.
de Batlle J, Ferrari P, Chajes V, Park J. Y, Slimani N, McKenzie F, Romieu I. Dietary folate intake and breast cancer risk: European prospective investigation into cancer and nutrition. J Natl Cancer Inst. 2015;107(1):367. https://doi.org/10.1093/jnci/dju367.
Du P, Kibbe WA, Lin SM. Lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24(13):1547–8. https://doi.org/10.1093/bioinformatics/btn224.
Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, Lin SM. Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010;11:587. https://doi.org/10.1186/1471-2105-11-587.
Fan J, Ma LJ, Xia SJ, Yu L, Fu Q, Wu CQ, Tang XD. Association between clinical characteristics and expression abundance of RTKN gene in human bladder carcinoma tissues from Chinese patients. J Cancer Res Clin Oncol. 2005;131(3):157–62. https://doi.org/10.1007/s00432-004-0638-8.
Hastie T. The elements of statistical learning: data mining, inference, and prediction; 2009.
Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109. https://doi.org/10.1073/pnas.1120658109.
Hino K, Saito A, Kido M, Kanemoto S, Asada R, Takai T, Imaizumi K. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem. 2014;289(20):13810–820. https://doi.org/10.1074/jbc.M113.543322.
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84. https://doi.org/10.1038/s41576-018-0004-3.
Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Kelsey KT. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13(1):1–16. https://doi.org/10.1186/1471-2105-13-86.
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Morgan M. Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods. (2015);12(2):115–21. https://doi.org/10.1038/nmeth.3252.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2012). Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens (1017–1606). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23193840, https://www.ncbi.nlm.nih.gov/pmc/PMC4781577/.
Illumina (Producer). (2011). GenomeStudio/BeadStudio Software Methylation Module.
Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR. London SJ. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9(5):436–47. https://doi.org/10.1161/circgenetics.116.001506.
Joubert BR, den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, London SJ. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. (2016);7:10577. https://doi.org/10.1038/ncomms10577.
Kok DE, Dhonukshe-Rutten RA, Lute C, Heil SG, Uitterlinden AG, van der Velde N, Steegenga WT. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics. 2015;7;121. https://doi.org/10.1186/s13148-015-0154-5.
Kruman II, Fowler AK. Impaired one carbon metabolism and DNA methylation in alcohol toxicity. J Neurochem. 2014;129(5):770–80. https://doi.org/10.1111/jnc.12677.
Lee MP, Brandenburg S, Landes GM, Adams M, Miller G, Feinberg AP. Two novel genes in the center of the 11p15 imprinted domain escape genomic imprinting. Hum Mol Genet. 1999;8(4):683–90.
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3. https://doi.org/10.1093/bioinformatics/bts034.
Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3. https://doi.org/10.1371/journal.pgen.0030161.
Leek JT, Storey JD. A general framework for multiple testing dependence. Proc Natl Acad Sci U S A. 2008;105(48):18718–23. https://doi.org/10.1073/pnas.0808709105.
Liu C, Marioni RE, Hedman AK, Pfeiffer L, Tsai PC, Reynolds LM, Levy D. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry. 2016. https://doi.org/10.1038/mp.2016.192.
Mason JB, Choi S-W. Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol. 2005;35(3):235–41. https://doi.org/10.1016/j.alcohol.2005.03.012.
Matejcic M, de Batlle J, Ricci C, Biessy C, Perrier F, Huybrechts I, Chajes V. Biomarkers of folate and vitamin B12 and breast cancer risk: report from the EPIC cohort. Int J Cancer. 2017;140(6):1246–59. https://doi.org/10.1002/ijc.30536.
Niculescu MD, Haggarty P. Nutrition in epigenetics: Wiley; 2011.
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–D745. https://doi.org/10.1093/nar/gkv1189.
Panagopoulos I, Storlazzi CT, Fletcher CD, Fletcher JA, Nascimento A, Domanski HA, Mertens F. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer. 2004;40(3):218–28. https://doi.org/10.1002/gcc.20037.
Patel RM, Downs-Kelly E, Dandekar MN, Fanburg-Smith JC, Billings SD, Tubbs RR, Goldblum JR. FUS (16p11) gene rearrangement as detected by fluorescence in-situ hybridization in cutaneous low-grade fibromyxoid sarcoma: a potential diagnostic tool. Am J Dermatopathol. 2011;33(2):140–3. https://doi.org/10.1097/IAE.0b013e318176de80.
Peltomaki P, de la Chapelle A. Mutations predisposing to hereditary nonpolyposis colorectal cancer. Adv Cancer Res. 1997;71:93–119.
Perrier F, Novoloaca A, Ambatipudi S, Baglietto L, Ghantous A, Perduca V, Ferrari, P. Identifying and correcting epigenetics measurements for systematic sources of variation. Clin Epigenetics. 2018;10(1):38. https://doi.org/10.1186/s13148-018-0471-6.
Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, Molloy PL. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8(1):1–16. https://doi.org/10.1186/1756-8935-8-6.
Pochini L, Scalise M, Galluccio M, Indiveri C. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Frontiers Chem. 2014;2(61). https://doi.org/10.3389/fchem.2014.00061.
Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Saracci R. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–24. https://doi.org/10.1079/phn2002394.
Saeki N, Usui T, Aoyagi K, Kim DH, Sato M, Mabuchi T, Sasaki H. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 2009;48(3):261–71. https://doi.org/10.1002/gcc.20636.
Satterthwaite FE. An approximate distribution of estimates of variance components. Biometrics. 1946;2. https://doi.org/10.2307/3002019.
Seifert A, Werheid DF, Knapp SM, Tobiasch E. Role of Hox genes in stem cell differentiation. World J Stem Cells. 2015;7(3):583–95. https://doi.org/10.4252/wjsc.v7.i3.583.
Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10(5):361–71. https://doi.org/10.1038/nrc2826.
Sieri S, Agudo A, Kesse E, Klipstein-Grobusch K, San-Jose B, Welch AA, Slimani N. Patterns of alcohol consumption in 10 European countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) project. Public Health Nutr. 2002;5(6b):1287–96. https://doi.org/10.1079/phn2002405.
Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G, Riboli E. The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr. 2007a;61(9):1037–56. https://doi.org/10.1038/sj.ejcn.1602679.
Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G, Riboli E. European Prospective Investigation into Cancer and nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr. 2007b;5(6b):1125–45. https://doi.org/10.1079/PHN2002395.
Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet and Mol Biol. 2004;3.
Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R. and bioconductor. New York: Springer; 2005.
Szyf M. The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci. 2011;120(2):235–55. https://doi.org/10.1093/toxsci/kfr024.
Teegarden D, Romieu I, Lelievre SA. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved? Nutr Res Rev. 2012;25(1):68–95. https://doi.org/10.1017/s0954422411000199.
Teo WW, Merino VF, Cho S, Korangath P, Liang X, Wu Rc, Sukumar S. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35(42):5539–51. https://doi.org/10.1038/onc.2016.95.
Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96. https://doi.org/10.1093/bioinformatics/bts680.
Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B Stat Methodol. 2005;67(1):91–108. https://doi.org/10.1111/j.1467-9868.2005.00490.x.
Wareham NJ, Jakes RW, Rennie KL, Schuit J, Mitchell J, Hennings S, Day NE. Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr. 2003;6(4):407–13. https://doi.org/10.1079/phn2002439.
World Cancer Research Fund International, & American Institue for Cancer Research. (2017). Continuous update project report: diet, nutrition, physical activity and breast cancer. Retrieved from https://www.wcrf.org/sites/default/files/Breast-Cancer-2017-Report.pdf
Zhang S, Hunter DJ, Hankinson SE, Giovannucci EL, Rosner BA, Colditz GA, Willett WC. A prospective study of folate intake and the risk of breast cancer. JAMA. 1999;281(17):1632–7.
Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006;101(476):1418–29. https://doi.org/10.1198/016214506000000735.
