Assessment of neurocognitive function and social cognition with computerized batteries: Psychometric properties of the Portuguese PennCNB in healthy controls
Tóm tắt
The Penn Computerized Neurocognitive Battery (PennCNB) is a measure of performance in 5 broader neurocognitive domains linked to specific brain systems. The current study aims to provide the psychometric properties of the Portuguese translation of the test battery, by presenting a confirmatory factor analysis and data on the test sensitivity to gender, effects of age and education in healthy individuals. The Portuguese PennCNB was administered to a sample of 152 healthy participants from the general population. We aimed to confirm the PennCNB latent structure of the Efficiency Scores (Accuracy and Speed combined) according to a 4-factor behavioral trait model. Gender differences and the effect of age and education on test performance were analyzed. The 4-factor model presented a good fit. Males and females showed different trends in performance on specific tests, although differences in efficiency scores were non-significant. Education and age showed a weak effect on efficiency scores, affecting participants’ performance differently across domains. Findings indicate that PennCNB test scores were related to their target domains, maintained their integrity in comparison to similar studies, and thus, constitutes an effective and versatile tool for clinical and multi-site research studies.
Tài liệu tham khảo
Addington, J., Saeedi, H., & Addington, D. (2006). Facial affect recognition: A mediator between cognitive and social functioning in psychosis? Schizophrenia Research, 85, 142–150. https://doi.org/10.1016/j.schres.2006.03.028.
Aigner, M., Sachs, G., Bruckmüller, E., Winklbaur, B., Zitterl, W., Kryspin-Exner, I., Gur, R. C., & Katschnig, H. (2007). Cognitive and emotion recognition deficits in obsessive-compulsive disorder. Psychiatry Research, 149, 121–128. https://doi.org/10.1016/j.psychres.2005.12.006.
Butters, M.A., Bhalla, R.K., Andreescu, C., Wetherell, J.L., Mantella, R., Begley, A.E., Lenze, E.J. (2011). Changes in neuropsychological functioning following treatment for late-life generalised anxiety disorder. The British Journal of Psychiatry 199.
Calkins, M. E., Ray, A., Gur, R. C., Freedman, R., Green, M. F., Greenwood, T. A., Light, G. A., Nuechterlein, K. H., Olincy, A., Radant, A. D., Seidman, L. J., Siever, L. J., Silverman, J. M., Stone, W. S., Sugar, C., Swerdlow, N. R., Tsuang, D. W., Tsuang, M. T., Turetsky, B. I., Braff, D. L., Lazzeroni, L. C., & Gur, R. E. (2013). Sex differences in familiality effects on neurocognitive performance in schizophrenia. Biological Psychiatry, 73, 976–984. https://doi.org/10.1016/j.biopsych.2012.12.021.
Censits, D. M., Ragland, J. D., Gur, R. C., & Gur, R. E. (1997). Neuropsychological evidence supporting a neurodevelopmental model of schizophrenia: A longitudinal study. Schizophrenia Research, 24, 289–298. https://doi.org/10.1016/S0920-9964(96)00091-6.
Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. ed, statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, New York.
Cole, V. T., Weinberger, D. R., & Dickinson, D. (2011). Intra-individual variability across neuropsychological tasks in schizophrenia: A comparison of patients, their siblings, and healthy controls. Schizophrenia Research, 129, 91–93. https://doi.org/10.1016/j.schres.2011.03.007.
Delis, D. C., Massman, P. J., Butters, N., Salmon, D. P., Cermak, L. S., & Kramer, J. H. (1991). Profiles of demented and amnesic patients on the California verbal learning test: Implications for the assessment of memory disorders. Psychological Assessment, 3, 19–26. https://doi.org/10.1037/1040-3590.3.1.19.
Elwood, R. (1995). The California verbal learning test: Psychometric characteristics and clinical application. Neuropsychology Review, 5(3), 173–201.
Fett, A. K. J., Viechtbauer, W., de Dominguez, M. G., Penn, D. L., Van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience and Biobehavioral Reviews, 35, 573–588. https://doi.org/10.1016/j.neubiorev.2010.07.001.
Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50. https://doi.org/10.2307/3151312.
Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”? Schizophrenia Bulletin, 26, 119–136. https://doi.org/10.1093/oxfordjournals.schbul.a033430.
Gur, R. C., Erwin, R. J., & Gur, R. E. (1992). Neurobehavioral probes for physiologic neuroimaging studies. Archives of General Psychiatry, 49, 409. https://doi.org/10.1001/archpsyc.1992.01820050073013.
Gur, R. C., Ragland, J. D., Moberg, P. J., Bilker, W. B., Kohler, C., Siegel, S. J., & Gur, R. E. (2001a). Computerized neurocognitive scanning: II. The profile of schizophrenia. Neuropsychopharmacology, 25, 777–788. https://doi.org/10.1016/S0893-133X(01)00279-2.
Gur, R. C., Ragland, J. D., Moberg, P. J., Turner, T. H., Bilker, W. B., Kohler, C., Siegel, S. J., & Gur, R. E. (2001b). Computerized neurocognitive scanning: I. Methodology and validation in healthy people. Neuropsychopharmacology, 25, 766–776. https://doi.org/10.1016/S0893-133X(01)00278-0.
Gur, R. C., Richard, J., Hughett, P., Calkins, M. E., Macy, L., Bilker, W. B., Brensinger, C., & Gur, R. E. (2010). A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation. Journal of Neuroscience Methods, 187, 254–262. https://doi.org/10.1016/j.jneumeth.2009.11.017.
Gur, R. C., Richard, J., Calkins, M. E., Chiavacci, R., Hansen, J. A., Bilker, W. B., Loughead, J., Connolly, J. J., Qiu, H., Mentch, F. D., Abou-Sleiman, P. M., Hakonarson, H., & Gur, R. E. (2012). Age group and sex differences in performance on a computerized neurocognitive battery in children age 8−21. Neuropsychology, 26, 251–265. https://doi.org/10.1037/a0026712.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55. https://doi.org/10.1080/10705519909540118.
IBM SPSS Amos. (2012). IBM SPSS Amos. IBM Softw. Bus. Anal. YTD03114-U, 1–8.
Joel, D., Berman, Z., Tavor, I., Wexler, N., Gaber, O., Stein, Y., Shefi, N., Pool, J., Urchs, S., Margulies, D. S., Liem, F., Hänggi, J., Jäncke, L., & Assaf, Y. (2015). Sex beyond the genitalia: The human brain mosaic. Proceedings of the National Academy of Sciences, 112, 15468–15473. https://doi.org/10.1073/PNAS.1509654112.
Joel, D., Persico, A., Salhov, M., Berman, Z., Oligschläger, S., Meilijson, I., & Averbuch, A. (2018). Analysis of human brain structure reveals that the brain “types” typical of males are also typical of females, and vice versa. Frontiers in Human Neuroscience, 12, 1–18. https://doi.org/10.3389/fnhum.2018.00399.
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55, 352–358. https://doi.org/10.1037/h0043688.
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd Ed. ed.). New York: Guilford Press. https://doi.org/10.1038/156278a0.
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist Bias. Neuron, 93, 480–490. https://doi.org/10.1016/j.neuron.2016.12.041.
Kraus, M. S., & Keefe, R. S. E. (2007). Cognition as an outcome measure in schizophrenia. The British Journal of Psychiatry, 191, s46–s51. https://doi.org/10.1192/bjp.191.50.s46.
Lane, T. A., Moore, D. M., Batchelor, J., Brew, B. J., & Cysique, L. A. (2012). Facial emotional processing in HIV infection: Relation to neurocognitive and neuropsychiatric status. Neuropsychology, 26, 713–722. https://doi.org/10.1037/a0029964.
Lynn, R., & Irwing, P. (2004). Sex differences on the progressive matrices: A meta-analysis. Intelligence, 32, 481–498. https://doi.org/10.1016/j.intell.2004.06.008.
May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 15, 475–482. https://doi.org/10.1016/j.tics.2011.08.002.
Meyer, M. B., & Kurtz, M. M. (2009). Elementary neurocognitive function, facial affect recognition and social-skills in schizophrenia. Schizophrenia Research, 110, 173–179. https://doi.org/10.1016/j.schres.2009.03.015.
Moore, T. M., Reise, S. P., Gur, R. E., Hakonarson, H., & Gur, R. C. (2015). Psychometric properties of the penn computerized neurocognitive battery. Neuropsychology, 29, 235–246. https://doi.org/10.1037/neu0000093.
Pavuluri, M. N., West, A., Hill, S. K., Jindal, K., Sweeney, J. A., & Glick-Oberwise, F. (2009). Neurocognitive function in pediatric bipolar disorder: 3-year follow-up shows cognitive development lagging behind healthy youths. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 299–307. https://doi.org/10.1097/CHI.0b013e318196b907.
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303–308. https://doi.org/10.1001/archneur.56.3.303.
Pijnenborg, G. H. M., Withaar, F. K., Evans, J. J., van den Bosch, R. J., Timmerman, M. E., & Brouwer, W. H. (2009). The predictive value of measures of social cognition for community functioning in schizophrenia: Implications for neuropsychological assessment. Journal of the International Neuropsychological Society, 15, 239–247. https://doi.org/10.1017/S1355617709090341.
Pinkham, A. E., & Penn, D. L. (2006). Neurocognitive and social cognitive predictors of interpersonal skill in schizophrenia. Psychiatry Research, 143, 167–178. https://doi.org/10.1016/j.psychres.2005.09.005.
Pinkham, A. E., Hopfinger, J. B., Ruparel, K., & Penn, D. L. (2008). An investigation of the relationship between activation of a social cognitive neural network and social functioning. Schizophrenia Bulletin, 34, 688–697. https://doi.org/10.1093/schbul/sbn031.
Roalf, D. R., Gur, R. C., Almasy, L., Richard, J., Gallagher, R. S., Prasad, K., Wood, J., Pogue-Geile, M. F., Nimgaonkar, V. L., & Gur, R. E. (2013a). Neurocognitive performance stability in a multiplex multigenerational study of schizophrenia. Schizophrenia Bulletin, 39, 1008–1017. https://doi.org/10.1093/schbul/sbs078.
Roalf, D. R., Ruparel, K., Verma, R., Elliott, M. A., Gur, R. E. R. C., & Gur, R. E. R. C. (2013b). White matter organization and neurocognitive performance variability in schizophrenia. Schizophrenia Research, 143, 172–178. https://doi.org/10.1016/j.schres.2012.10.014.
Snyder, P. J., Jackson, C. E., Petersen, R. C., Khachaturian, A. S., Kaye, J., Albert, M. S., & Weintraub, S. (2011). Assessment of cognition in mild cognitive impairment: A comparative study. Alzheimer’s Dement, 7, 338–355. https://doi.org/10.1016/j.jalz.2011.03.009.
Swagerman, S. C., De Geus, E. J. C., Kan, K. J., Van Bergen, E., Nieuwboer, H. A., Koenis, M. M. G., HulshoffPol, H. E., Gur, R. E., Gur, R. C., & Boomsma, D. I. (2016). The computerized neurocognitive battery: Validation, aging effects, and heritability across cognitive domains. Neuropsychology, 30, 53–64. https://doi.org/10.1037/neu0000248.
Yi, J. J., Weinberger, R., Moore, T. M., Calkins, M. E., Guri, Y., McDonald-McGinn, D. M., Zackai, E. H., Emanuel, B. S., Gur, R. E., Gothelf, D., & Gur, R. C. (2016). Performance on a computerized neurocognitive battery in 22q11.2 deletion syndrome: A comparison between US and Israeli cohorts. Brain and Cognition, 106, 33–41. https://doi.org/10.1016/j.bandc.2016.02.002.