Assessment of four strain energy decomposition methods for phase field fracture models using quasi-static and dynamic benchmark cases

Shuaifang Zhang1, Wen Jiang2, Michael R. Tonks1
1Department of Materials Science and Engineering, University of Florida, Gainesville, USA
2Idaho National Laboratory, Computational Mechanics and Materials, P.O. Box 1625, Idaho Falls, USA

Tóm tắt

Strain energy decomposition methods in phase field fracture models separate strain energy that contributes to fracture from that which does not. However, various decomposition methods have been proposed in the literature, and it can be difficult to determine an appropriate method for a given problem. The goal of this work is to facilitate the choice of strain decomposition method by assessing the performance of three existing methods (spectral decomposition of the stress or the strain and deviatoric decomposition of the strain) and one new method (deviatoric decomposition of the stress) with several benchmark problems. In each benchmark problem, we compare the performance of the four methods using both qualitative and quantitative metrics. In the first benchmark, we compare the predicted mechanical behavior of cracked material. We then use four quasi-static benchmark cases: a single edge notched tension test, a single edge notched shear test, a three-point bending test, and a L-shaped panel test. Finally, we use two dynamic benchmark cases: a dynamic tensile fracture test and a dynamic shear fracture test. All four methods perform well in tension, the two spectral methods perform better in compression and with mixed mode (though the stress spectral method performs the best), and all the methods show minor issues in at least one of the shear cases. In general, whether the strain or the stress is decomposed does not have a significant impact on the predicted behavior.

Từ khóa


Tài liệu tham khảo

M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech.55(2), 383–405 (2015a).

M. Ambati, T. Gerasimov, L. De Lorenzis, Phase-field modeling of ductile fracture. Comput. Mech.55(5), 1017–1040 (2015b).

M. Ambati, R. Kruse, L. De Lorenzis, A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech.57(1), 149–167 (2016).

H. Amor, J. -J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids. 57(8), 1209–1229 (2009).

I. Aranson, V. Kalatsky, V. Vinokur, Continuum field description of crack propagation. Phys. Rev. Lett.85(1), 118 (2000).

E. Azinpour, J. C. d. Sa, A. D. d. Santos, Micromechanically-motivated phase field approach to ductile fracture. Int. J. Damage Mech.30(1), 46–76 (2021).

T. N. Bittencourt, P. Wawrzynek, A. Ingraffea, J. Sousa, Quasi-automatic simulation of crack propagation for 2d lefm problems. Eng. Fract. Mech.55(2), 321–334 (1996).

M. J. Borden, T. J. Hughes, C. M. Landis, C. V. Verhoosel, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng.273:, 100–118 (2014).

M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. Hughes, C. M. Landis, A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng.217:, 77–95 (2012).

B. Bourdin, G. A. Francfort, J. -J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids. 48(4), 797–826 (2000).

B. Bourdin, C. J. Larsen, C. L. Richardson, A time-discrete model for dynamic fracture based on crack regularization. Int. J. Fract.168(2), 133–143 (2011).

P. Chakraborty, Y. Zhang, M. R. Tonks, Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method. Comput. Mater. Sci.113:, 38–52 (2016).

L. -Q. Chen, Phase-Field Models for Microstructure Evolution. Annu. Rev. Mater. Res.32(1), 113–140 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041. Accessed 29 Jan 2016.

M. Dittmann, F. Aldakheel, J. Schulte, P. Wriggers, C. Hesch, Variational phase-field formulation of non-linear ductile fracture. Comput. Methods Appl. Mech. Eng.342:, 71–94 (2018).

G. A. Francfort, J. -J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. 46(8), 1319–1342 (1998).

D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandie, Moose: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239(10), 1768–1778 (2009).

T. Gerasimov, L. De Lorenzis, On penalization in variational phase-field models of brittle fracture. Comput. Methods Appl. Mech. Eng.354:, 990–1026 (2019).

Y. D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract.162(1-2), 229–244 (2010).

V. Hakim, A. Karma, Laws of crack motion and phase-field models of fracture. J. Mech. Phys. Solids. 57(2), 342–368 (2009).

Y. Heider, B. Markert, A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech. Res. Commun.80:, 38–46 (2017).

Y. Heider, S. Reiche, P. Siebert, B. Markert, Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data. Eng. Fract. Mech.202:, 116–134 (2018).

H. Henry, H. Levine, Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys. Rev. Lett.93(10), 105504 (2004).

H. M. Hilber, T. J. Hughes, R. L. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn.5(3), 283–292 (1977).

T. Hu, J. Guilleminot, J. E. Dolbow, A phase-field model of fracture with frictionless contact and random fracture properties: Application to thin-film fracture and soil desiccation. Comput. Methods Appl. Mech. Eng.368:, 113106 (2020).

T. J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng.194(39-41), 4135–4195 (2005).

W. Jiang, T. Hu, L. K. Aagesen, Y. Zhang, Three-dimensional phase-field modeling of porosity dependent intergranular fracture in uo2. Comput. Mater. Sci.171:, 109269 (2020).

J. F. Kalthoff, Modes of dynamic shear failure in solids. Int. J. Fract.101(1-2), 1–31 (2000).

J. Kalthoff, S. Winkler, DGM Informationsgesellschaft mbH, Impact Loading and Dynamic Behavior of Materials. 1:, 185–195 (1988).

A. Karma, D. A. Kessler, H. Levine, Phase-field model of mode iii dynamic fracture. Phys. Rev. Lett.87(4), 045501 (2001).

C. Kuhn, R. Müller, A phase field model for fracture. PAMM. 8(1), 10223–10224 (2008).

C. Kuhn, R. Müller, in PAMM: Proceedings in Applied Mathematics and Mechanics, vol. 9, no. 1. Phase field simulation of thermomechanical fracture (WILEY-VCH VerlagBerlin, 2009), pp. 191–192.

C. J. Larsen, in IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, ed. by K. Hackl. Models for Dynamic Fracture Based on Griffith’s Criterion (Springer NetherlandsDordrecht, 2010), pp. 131–140.

S. May, J. Vignollet, R. De Borst, A numerical assessment of phase-field models for brittle and cohesive fracture: γ-convergence and stress oscillations. Eur. J. Mech.-A/Solids. 52:, 72–84 (2015).

C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng.199(45), 2765–2778 (2010).

C. Miehe, S. Mauthe, Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput. Methods Appl. Mech. Eng.304:, 619–655 (2016).

C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. Int. J. Numer. Methods Eng.83(10), 1273–1311 (2010).

I. Miranda, R. M. Ferencz, T. J. Hughes, An improved implicit-explicit time integration method for structural dynamics. Earthq. Eng. Struct. Dyn.18(5), 643–653 (1989).

N. Moelans, B. Blanpain, P. Wollants, An introduction to phase-field modeling of microstructure evolution. Calphad. 32(2), 268–294 (2008). https://doi.org/10.1016/j.calphad.2007.11.003. Accessed 29 Jan 2016.

M. A. Msekh, J. M. Sargado, M. Jamshidian, P. M. Areias, T. Rabczuk, Abaqus implementation of phase-field model for brittle fracture. Comput. Mater. Sci.96:, 472–484 (2015).

T. -T. Nguyen, D. Waldmann, T. Q. Bui, Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials. Comput. Methods Appl. Mech. Eng.348:, 1–28 (2019).

V. P. Nguyen, J. -Y. Wu, Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput. Methods Appl. Mech. Eng.340:, 1000–1022 (2018).

C. J. Permann, D. R. Gaston, D. Andrš, R. W. Carlsen, F. Kong, A. D. Lindsay, J. M. Miller, J. W. Peterson, A. E. Slaughter, R. H. Stogner, R. C. Martineau, MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX. 11:, 100430 (2020). https://doi.org/10.1016/j.softx.2020.100430.

A. A. Rezwan, A. M. Jokisaari, M. R. Tonks, Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials. Comput. Mater. Sci.194:, 110407 (2021).

I. Steinbach, Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale. Annu. Rev. Mater. Res.43(1), 89–107 (2013). https://doi.org/10.1146/annurev-matsci-071312-121703. Accessed 24 May 2018.

J. -H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech.42(2), 239–250 (2008).

L. Svolos, C. A. Bronkhorst, H. Waisman, Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method. J. Mech. Phys. Solids. 137:, 103861 (2020).

M. R. Tonks, L. K. Aagesen, The phase field method: mesoscale simulation aiding material discovery. Annu. Rev. Mater. Res.49:, 79–102 (2019).

M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, P. Talbot, An object-oriented finite element framework for multiphysics phase field simulations. Comput. Mater. Sci.51(1), 20–29 (2012).

C. V. Verhoosel, R. de Borst, A phase-field model for cohesive fracture. Int. J. Numer. Methods Eng.96(1), 43–62 (2013).

Z. A. Wilson, C. M. Landis, Phase-field modeling of hydraulic fracture. J. Mech. Phys. Solids. 96:, 264–290 (2016).

B. J. Winkler, Traglastuntersuchungen Von Unbewehrten und Bewehrten Betonstrukturen Auf der Grundlage Eines Objektiven Werkstoffgesetzes Für Beton (Innsbruck University Press, Innsbruck, 2001).

J. -Y. Wu, A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids. 103:, 72–99 (2017).

J. -Y. Wu, V. P. Nguyen, C. T. Nguyen, D. Sutula, S. Sinaie, S. P. Bordas, Phase-field modeling of fracture. Adv. Appl. Mech.53:, 1–183 (2020).

S. Zhang, W. Jiang, M. R. Tonks, A new phase field fracture model for brittle materials that accounts for elastic anisotropy. Comput. Methods Appl. Mech. Eng.358:, 112643 (2020).

S. Zhou, T. Rabczuk, X. Zhuang, Phase field modeling of quasi-static and dynamic crack propagation: Comsol implementation and case studies. Adv. Eng. Softw.122:, 31–49 (2018).

X. Zhuang, S. Zhou, M. Sheng, G. Li, On the hydraulic fracturing in naturally-layered porous media using the phase field method. Eng. Geol.266:, 105306 (2020).