Assessing the stability of human locomotion: a review of current measures

Journal of the Royal Society Interface - Tập 10 Số 83 - Trang 20120999 - 2013
Sjoerd M. Bruijn1,2, Onno G. Meijer3,4,5, Peter J. Beek4, Jaap H. van Dieën4
1Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
2Motor Control Laboratory, Department of Biomedical Kinesiology, Research Centre for Movement Control and Neuroplasticity, K.U. Leuven, Belgium
3Department of Rehabilitation, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
4Faculty of Human Movement Sciences, Research Institute MOVE, VU University, Amsterdam, The Netherlands
5Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, People's Republic of China

Tóm tắt

Falling poses a major threat to the steadily growing population of the elderly in modern-day society. A major challenge in the prevention of falls is the identification of individuals who are at risk of falling owing to an unstable gait. At present, several methods are available for estimating gait stability, each with its own advantages and disadvantages. In this paper, we review the currently available measures: the maximum Lyapunov exponent ( λ S and λ L ), the maximum Floquet multiplier, variability measures, long-range correlations, extrapolated centre of mass, stabilizing and destabilizing forces, foot placement estimator, gait sensitivity norm and maximum allowable perturbation. We explain what these measures represent and how they are calculated, and we assess their validity, divided up into construct validity, predictive validity in simple models, convergent validity in experimental studies, and predictive validity in observational studies. We conclude that (i) the validity of variability measures and λ S is best supported across all levels, (ii) the maximum Floquet multiplier and λ L have good construct validity, but negative predictive validity in models, negative convergent validity and (for λ L ) negative predictive validity in observational studies, (iii) long-range correlations lack construct validity and predictive validity in models and have negative convergent validity, and (iv) measures derived from perturbation experiments have good construct validity, but data are lacking on convergent validity in experimental studies and predictive validity in observational studies. In closing, directions for future research on dynamic gait stability are discussed.

Từ khóa


Tài liệu tham khảo

Calandre L, 2005, Gait and stability disorders of the elderly. Clinical analysis of a series of 259 patients older than 70 years, Neurologia, 20, 232

10.1080/00140130802567079

10.1016/j.gaitpost.2004.01.014

10.1007/s00421-007-0613-6

10.1046/j.1532-5415.2002.50056.x

10.1093/ageing/26.4.261

10.1016/S0966-6362(99)00016-8

10.1186/1471-244X-4-39

10.1016/S0022-510X(03)00104-7

10.1136/bmj.311.6997.83

10.1002/mds.20115

10.1093/ageing/afl084

10.1682/JRRD.2007.10.0169

10.1016/j.clinbiomech.2009.07.012

10.1123/jpah.5.3.445

10.1136/ip.2007.018275

10.1016/j.clinbiomech.2009.08.009

10.1007/s10067-009-1115-1

10.2486/indhealth.46.59

10.1109/TITB.2009.2033673

Bloem BR, 2001, Falls in the elderly. I. Identification of risk factors, Wien. Klin. Wochenschr., 113, 352

10.1177/027836499000900206

10.1109/TRO.2007.904908

10.1017/S0263574708004645

10.1007/s00422-005-0579-6

10.1016/j.humov.2011.06.002

10.1115/1.2895701

10.1098/rsif.2011.0416

10.1016/j.gaitpost.2011.07.010

10.1115/1.2796024

10.1016/S0021-9290(00)00092-0

10.1016/j.jbiomech.2003.11.031

10.1016/j.clinbiomech.2009.12.003

10.1016/j.gaitpost.2011.02.017

10.1186/1743-0003-8-12

Tenbroek TM, 2007, Lyapunov exponent estimation for human gait acceleration signals. In Proc. Int. Soc. of Biomechanics XXI Congress, Taipei, Taiwan, 1–5 July 2007.

10.1016/j.clinbiomech.2004.06.008

10.1123/mcj.14.1.126

10.1007/s10439-010-0240-y

10.1016/j.jbiomech.2010.05.038

10.1016/j.jbiomech.2008.02.012

10.1115/1.3148465

10.1007/978-3-540-36119-0_16

10.1299/jsmec.48.607

10.1016/j.gaitpost.2011.04.003

10.1016/j.jss.2010.04.030

10.1016/j.clinbiomech.2011.03.005

10.1016/j.jvs.2008.11.020

10.1016/j.gaitpost.2010.04.008

10.1007/s00167-007-0373-1

10.1016/j.jbiomech.2005.10.019

10.1016/j.gaitpost.2009.04.011

10.1109/TASE.2008.923821

10.1186/1743-0003-5-22

10.1186/1743-0003-4-30

10.1016/j.jbiomech.2009.06.038

10.1016/j.gaitpost.2005.11.004

10.1007/s00221-005-0224-6

10.1016/j.jbiomech.2009.03.015

10.1016/j.gaitpost.2006.03.003

10.1016/j.jbiomech.2004.12.014

10.1016/j.jbiomech.2006.08.006

10.1115/1.1336798

10.1063/1.1324008

10.1016/j.jbiomech.2009.04.012

10.1123/mcj.8.3.241

10.1016/S0268-0033(03)00029-9

10.1016/j.jneumeth.2008.12.015

10.1007/s10439-010-0018-2

10.1242/jeb.045112

10.1016/j.medengphy.2011.07.024

10.1242/jeb.026153

10.1249/MSS.0b013e31818a0ea4

10.1016/j.jbiomech.2011.03.003

10.1016/j.jbiomech.2010.11.007

10.1016/j.gaitpost.2012.05.016

10.1016/j.gaitpost.2012.03.005

Ijmker T, 2011, Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia, Gait Posture, 35, 489

10.1186/1743-0003-8-2

10.1016/j.medengphy.2010.07.001

10.1016/0167-2789(93)90009-P

Takens F, 1981, Dynamical systems and turbulence, 366

10.1016/j.gaitpost.2009.05.003

10.1016/0021-9290(93)90027-C

10.1016/j.jelekin.2007.06.009

10.1016/j.jelekin.2008.06.006

10.1016/j.clinbiomech.2009.12.003

10.1007/s10877-006-1032-7

10.1016/j.clinbiomech.2010.07.015

10.1016/0167-2789(85)90011-9

10.1016/j.jbiomech.2011.06.031

10.1115/1.2800760

Kurz MJ, 2010, Attractor divergence as a metric for assessing walking balance, Nonlinear Dyn. Psychol. Life Sci., 14, 151

10.1115/1.2798313

10.1016/j.humov.2010.04.009

Liu J, 2006, Proc. 16th World Congress of the International Ergonomics Association

10.1080/02681118608806015

Hobbelen DGE, 2007, Humanoid robotics

10.1115/1.2746383

10.1186/1743-0003-5-12

10.1016/j.jelekin.2007.06.008

Bruijn SM, 2010, Proc. 16th US National Congress on Theoretical and Applied Mechanics

Schwab AL, 2001, Proc. ASME Design Engineering Technical Conf.

10.1016/j.gaitpost.2012.06.015

10.1007/BF00336922

Bernstein N, 1967, The coordination and regulation of movement

10.1097/BPB.0b013e32801405bf

10.1016/j.jbiomech.2003.11.012

10.1016/S0021-9290(03)00108-8

10.1016/j.gaitpost.2004.01.013

10.1016/j.gaitpost.2010.03.019

10.1016/j.jbiomech.2010.02.003

10.1111/j.1532-5415.1997.tb00946.x

10.1016/j.humov.2005.03.003

10.1007/s00415-006-0522-3

10.1007/s00586-004-0825-y

10.1053/apmr.2001.24893

10.1002/mds.870130310

10.1186/1743-0003-2-19

10.1016/S0966-6362(01)00101-1

10.1093/gerona/62.9.983

10.1186/1743-0003-2-21

10.1186/1743-0003-2-26

10.1016/S0021-9290(00)00101-9

10.1016/j.clinbiomech.2009.11.002

10.1186/1743-0003-2-22

10.1371/journal.pcbi.1000856

10.1016/j.jbiomech.2010.07.008

10.1109/TBME.2007.901031

10.1177/02783649922066655

10.1152/jn.00131.2009

10.1152/jappl.1995.78.1.349

10.1103/PhysRevLett.70.1343

10.1016/j.humov.2006.10.001

10.1016/j.gaitpost.2006.08.010

10.1016/j.humov.2008.09.001

10.1016/j.gaitpost.2009.12.002

10.1016/j.gaitpost.2010.06.004

10.1016/j.gaitpost.2005.08.003

10.1103/PhysRevE.81.031101

10.1016/j.gaitpost.2010.09.020

10.1016/j.humov.2005.03.002

10.1152/japplphysiol.90757.2008

10.1073/pnas.012579499

10.1016/j.gaitpost.2003.08.002

10.1016/j.humov.2007.05.003

10.1016/S0378-4371(01)00460-5

10.1177/0891988702250580

10.1152/jappl.2000.88.6.2045

10.1152/jappl.1997.82.1.262

10.1152/jappl.1996.80.5.1448

10.1152/jappl.1999.86.3.1040

10.1152/japplphysiol.00413.2006

10.1016/j.physa.2007.02.061

10.1109/TNSRE.2008.925071

10.1016/j.jneumeth.2005.01.003

10.1016/j.jbiomech.2004.03.025

10.1016/j.humov.2007.08.003

10.1016/j.gaitpost.2006.04.013

10.1016/j.jbiomech.2005.12.016

10.1016/j.jbiomech.2011.06.012

10.1115/1.4000193

10.1016/j.gaitpost.2010.01.002

10.1016/j.jbiomech.2008.02.022

10.1016/j.jbiomech.2011.04.027

10.1242/jeb.042572

10.1016/j.jelekin.2007.04.003

10.1007/s00421-008-0704-z

10.1152/jn.00044.2006

10.1016/j.gaitpost.2010.11.017

10.1016/j.gaitpost.2010.11.023

10.1152/jn.1999.82.3.1622

10.1016/j.jbiomech.2011.12.027

10.1016/j.jbiomech.2008.11.007

10.1016/S0268-0033(98)00014-X

10.1016/S0021-9290(96)00165-0

10.1115/1.2815334

10.1115/1.4005462

10.1080/00222895.1995.9941712

10.1016/j.gaitpost.2008.11.009

10.1016/S0966-6362(01)00110-2

10.1016/j.jelekin.2005.06.011

van der Linden MH Hendricks HT Bloem BR& Duysens J. Submitted. Influence of expectancy on foot placement and limb loading when stepping down.

10.1177/0278364908095005

Bruijn SM Wisse M Draaijers E van Dieën JH Meijer OG& Beek PJ. 2008 The gait sensitivity norm in human walking. Proc. of Dynamic Walking Conf. Delft The Netherlands 26–29 May 2008 .

10.1016/j.ssci.2005.08.008

Strogatz SH, 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering

Zajac FE, 1989, Determining muscle's force and action in multi-articular movement, Exerc. Sport Sci. Rev., 17, 187

Kantz H, 1997, Nonlinear time series analysis

10.1103/PhysRevA.45.3403

Fraser AM, 1986, Dimensions and entropies in chaotic systems, 82, 10.1007/978-3-642-71001-8_11

10.1016/j.jbiomech.2012.10.032

10.1016/0167-2789(93)90135-N