Assembling Materials with DNA as the Guide

American Association for the Advancement of Science (AAAS) - Tập 321 Số 5897 - Trang 1795-1799 - 2008
Faisal A. Aldaye1,2, Alison L. Palmer1, Hanadi F. Sleiman1,2
1Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto ON, M5G 1Z8, Canada
2Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada

Tóm tắt

DNA's remarkable molecular recognition properties and structural features make it one of the most promising templates to pattern materials with nanoscale precision. The emerging field of DNA nanotechnology strips this molecule from any preconceived biological role and exploits its simple code to generate addressable nanostructures in one, two, and three dimensions. These structures have been used to precisely position proteins, nanoparticles, transition metals, and other functional components into deliberately designed patterns. They can also act as templates for the growth of nanowires, aid in the structural determination of proteins, and provide new platforms for genomics applications. The field of DNA nanotechnology is growing in a number of directions, carrying with it the promise to substantially affect materials science and biology.

Từ khóa


Tài liệu tham khảo

10.1038/nature01406

C. Lin, Y. Liu, S. Rinker, H. Yan, Chem. Phys. Chem.7, 1641 (2006) and references therein.

P. W. Rothemund, N. Papadakis, E. Winfree, PLoS Biol.2, 2041 (2004).

10.1126/science.1104686

Y. Weizmann, A. B. Braunschweig, O. I. Wilner, Z. Cheglakov, I. Willner, Proc. Natl. Acad. Sci. U.S.A.105, 5289 (2008).

R. P. Fahlman, D. Sen, J. Am. Chem. Soc.124, 4610 (2002).

A. P. Alivisatoset al., Nature382, 609 (1996).

K. Y. Pintoet al., Nano Lett.5, 2399 (2005).

J. Zhenget al., Nano Lett.6, 1502 (2006).

J. Sharma, R. Chhabra, Y. Liu, Y. Ke, H. Yan, Angew. Chem. Int. Ed.45, 730 (2006).

10.1126/science.1089389

Y. He, Y. Tian, A. E. Ribbe, C. Mao, J. Am. Chem. Soc.128, 12664 (2006).

B. A. R. Williams, K. Lund, Y. Liu, H. Yan, J. C. Chaput, Angew. Chem. Int. Ed.46, 3051 (2007).

R. Chhabraet al., J. Am. Chem. Soc.129, 10304 (2007).

J. D. Cohen, J. P. Sadowski, P. B. Dervan, J. Am. Chem. Soc.130, 402 (2008).

C. Lin, Y. Liu, H. Yan, Nano Lett.7, 507 (2007).

Z. Deng, C. Mao, Angew. Chem. Int. Ed.43, 4068 (2004).

J. Maloet al., Angew. Chem. Int. Ed.44, 3057 (2005).

10.1038/nature02307

10.1038/nature04586

Y. Ke, S. Lindsay, Y. Chang, Y. Liu, H. Yan, Science319, 180 (2008).

S. M. Douglas, J. J. Chou, W. M. Shih, Proc. Natl. Acad. Sci. U.S.A.104, 6644 (2007).

J.-M. Lehn, Chem. Soc. Rev.36, 151 (2007).

J. Shi, D. E. Bergstrom, Angew. Chem. Int. Ed. Engl.36, 111 (1997).

M. S. Shchepinov, K. U. Mir, J. K. Elder, M. D. Frank-Kamenetskii, E. M. Southern. Nucleic Acids Res.27, 3035 (1999).

M. Scheffler, A. Dorenbeck, S. Jordan, M. Wüstefeld, G. von Kiedrowski, Angew. Chem. Int. Ed.38, 3311 (1999).

F. A. Aldaye, H. F. Sleiman, Angew. Chem. Int. Ed.45, 2204 (2006) and references therein.

J. C. Chaput, C. Switzer, Proc. Natl. Acad. Sci. U.S.A.96, 10614 (1999).

W. Wang, W. Wan, H.-H. Zhou, S. Niu, A. D. Q. Li, J. Am. Chem. Soc.125, 5248 (2003).

M. Goritz, R. Kramer, J. Am. Chem. Soc.127, 18016 (2005).

K. Ding, F. E. Alemdaroglu, M. Borsch, R. Berger, A. Herrmann, Angew. Chem. Int. Ed.46, 1172 (2007).

M. Endo, N. C. Seeman, T. Majima, Angew. Chem. Int. Ed.44, 6074 (2005).

K. V. Gothelf, A. Thomsen, M. Nielsen, E. Clo, R. S. Brown, J. Am. Chem. Soc.126, 1044 (2004).

10.1126/science.1080587

K. Tanakaet al., Nat. Nanotechnol.1, 190 (2006).

D. Mitra, N. Di Cesare, H. F. Sleiman, Angew. Chem. Int. Ed.43, 5804 (2004).

J. S. Choiet al., J. Am. Chem. Soc.126, 8606 (2004).

K. M. Stewart, J. Rojo, L. W. McLaughlin, Angew. Chem. Int. Ed.43, 5808 (2004).

H. Yang, H. F. Sleiman, Angew. Chem. Int. Ed.47, 2443 (2008).

F. A. Aldaye, H. F. Sleiman, J. Am. Chem. Soc.129, 4130 (2007).

F. A. Aldaye, H. F. Sleiman, J. Am. Chem. Soc.129, 13376 (2007) and references therein.

The development of DNA machines has been an exciting and productive area of research; for a recent review see ( 55 ).

J. H. Chen, N. C. Seeman, Nature350, 631 (1991).

R. P. Goodmanet al., Nat. Nanotechnol.3, 93 (2008) and references therein.

Y. Heet al., Nature452, 198 (2008).

J. Zimmermann, M. P. J. Cebulla, S. Monninghoff, G. von Kiedrowski, Angew. Chem. Int. Ed.47, 3626 (2008).

S. Y. Parket al., Nature451, 553 (2008).

D. Nykypanchuk, M. M. Maye, D. van der Lelie, O. Gang, Nature451, 549 (2008).

J. Liu, D. P. Wernette, Y. Lu, Angew. Chem. Int. Ed.44, 7290 (2005).

F. A. Aldaye, H. F. Sleiman, J. Am. Chem. Soc.129, 10070 (2007).

10.1038/nature06451

C. Lin, X. Wang, Y. Liu, N. C. Seeman, H. Yan, J. Am. Chem. Soc.129, 14475 (2007).

L. H. Eckardtet al., Nature420, 286 (2002).

X. Li, Z.-Y. Zhan, R. Knipe, D. Lynn, J. Am. Chem. Soc.124, 746 (2002).

J. Bath, A. J. Turberfield, Nat. Nanotechnol.2, 275 (2008).

F.A.A. and H.F.S. have filed a provisional patent U.S. 60/960 000 on using DNA nanocapsules for controlled drug and gene delivery.