Asphaltene aggregation studied by molecular dynamics simulations: role of the molecular architecture and solvents on the supramolecular or colloidal behavior

Hugo Santos Silva1, Ahmad Alfarra2, Germain Salvato Vallverdu1, Didier Bégué1, Brice Bouyssière1, Isabelle Baraille3
1Institut des Science Analytiques et Physico-Chimie pour l'Environnement et les Materiaux, UMR 5254, CNRS/Univ Pau and Pays Adour, 64000, Pau, France
2Total Research and Technology, BP 27, 76700, Gonfreville, Harfleur, France
3Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Total Research and Technology, BP 27, 76700, Gonfreville, Harfleur, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akbarzadeh K, Hammami A, Kharrat A, Zhang D, Allenson S, Creek J, Kabir S, et al. Asphaltenes—problematic but rich in potential. Oilfield Rev. 2007;19(2):22–43.

Biktagirov T, Gafurov M, Mamin G, Gracheva I, Galukhin A, Orlinskii S. In situ identification of various structural features of vanadyl porphyrins in crude oil by high-yield (3.4 T) electron–nuclear double resonance spectroscopy combined with density functional theory calculations. Energy Fuels. 2017;31(2):1243–9. https://doi.org/10.1021/acs.energyfuels.6b02494 .

Dutta Majumdar R, Gerken M, Mikula R, Hazendonk P. Validation of the Yen-Mullins model of Athabasca oil-sands asphaltenes using solution-state 1H NMR relaxation and 2D HSQC spectroscopy. Energy Fuels. 2013;27(11):6528–37. https://doi.org/10.1021/ef401412w .

Dutta Majumdar R, Montina T, Mullins OC, Gerken M, Hazendonk P. Insights into asphaltene aggregate structure using ultrafast MAS solid-state 1H NMR spectroscopy. Fuel. (2017);193;359–368.

Fan T, Buckley JS. Rapid and accurate SARA analysis of medium gravity crude oils. Energy Fuels. 2002;16(6):1571–5. https://doi.org/10.1021/ef0201228 .

Ghosh AK, Chaudhuri P, Kumar B, Panja SS. Review on aggregation of asphaltene vis-a-vis spectroscopic studies. Fuel. 2016;185:541–54. https://doi.org/10.1016/j.fuel.2016.08.031 .

Gray MR, Tykwinski RR, Stryker JM, Tan X. Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuels. 2011;25(7):3125–34. https://doi.org/10.1021/ef200654p .

Headen TF, Boek ES, Skipper NT. Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy Fuels. 2009;23(3):1220–9. https://doi.org/10.1021/ef800872g .

Headen TF, Boek ES, Jackson G, Totton TS, Müller EA. Simulation of asphaltene aggregation through molecular dynamics: insights and limitations. Energy Fuels. 2017;31(2):1108–25. https://doi.org/10.1021/acs.energyfuels.6b02161 .

Jian C, Tang T, Bhattacharjee S. Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy Fuels. 2013;27(4):2057–67. https://doi.org/10.1021/ef400097h .

Kharrat AM, Zacharia J, Cherian VJ, Anyatonwu A. Issues with comparing SARA methodologies. Energy Fuels. 2007;21(6):3618–21. https://doi.org/10.1021/ef700393a .

Khvostichenko DS, Andersen SI, Viktorov AI. Solubility and binding of water in toluene solutions of asphaltenes. Russ J Appl Chem. 2004;77(6):1013–8. https://doi.org/10.1023/B:RJAC.0000044135.29973.03 .

Kirchnerová J, Cave GCB. The solubility of water in low-dielectric solvents. Can J Chem. 1976;54(24):3909–16. https://doi.org/10.1139/v76-562 .

Kuznicki T, Masliyah JH, Bhattacharjee S. Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy Fuels. 2008;22(4):2379–89.

Langevin D, Argillier JF. Interfacial behavior of asphaltenes. Adv Colloid Interface Sci. 2016;233:83–93. https://doi.org/10.1016/j.cis.2015.10.005 .

Liu L, Zhang R, Wang X, Simon S, Sjöblom J, Xu Z, Jiang B. Interactions of polyaromatic compounds. Part 1: nanoaggregation probed by electrospray ionization mass spectrometry and molecular dynamics simulation. Energy Fuels. 2017;31(4):3465–74. https://doi.org/10.1021/acs.energyfuels.6b03029 .

Merdrignac I, Espinat D. Physicochemical characterization of petroleum fractions: the state of the art. Oil Gas Sci Technol Rev. 2007;62(1):7–32. https://doi.org/10.2516/ogst:2007002 .

Mullins OC, Betancourt SS, Cribbs ME, Dubost FX, Creek JL, Andrews AB, Venkataramanan L. The colloidal structure of crude oil and the structure of oil reservoirs. Energy Fuels. 2007;21(5):2785–94. https://doi.org/10.1021/ef0700883 .

Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barré L, Andrews AB, Ruiz-Morales Y, et al. Advances in asphaltene science and the Yen-Mullins model. Energy Fuels. 2012;26(7):3986–4003. https://doi.org/10.1021/ef300185p .

Murgich J, Rodríguez J, Aray Y. Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy Fuels. 1996;10(1):68–76. https://doi.org/10.1021/ef950112p .

Ortega-Rodriguez A, Duda Y, Guevara-Rodriguez F, Lira-Galeana C. Stability and aggregation of asphaltenes in asphaltene- resin- solvent mixtures. Energy Fuels. 2004;18(3):674–81. https://doi.org/10.1021/ef0301699 .

Pacheco-Sánchez JH, Alvarez-Ramirez F, Martínez-Magadán JM. Morphology of aggregated asphaltene structural models. Energy Fuels. 2004;18(6):1676–86. https://doi.org/10.1021/ef049911a .

Pomerantz AE, Wu Q, Mullins OC, Zare RN. Laser-based mass spectrometric assessment of asphaltene molecular weight, molecular architecture, and nanoaggregate number. Energy Fuels. 2015;29(5):2833–42. https://doi.org/10.1021/ef5020764 .

Qiao P, Harbottle D, Tchoukov P, Masliyah J, Sjoblom J, Liu Q, Xu Z. Fractionation of asphaltenes in understanding their role in petroleum emulsion stability and fouling. Energy Fuels. 2017;31(4):3330–7. https://doi.org/10.1021/acs.energyfuels.6b02401 .

Rogel E. Studies on asphaltene aggregation via computational chemistry. Colloids Surf A. 1995;104(1):85–93. https://doi.org/10.1016/0927-7757(95)03234-5 .

Rogel E. Simulation of interactions in asphaltene aggregates. Energy Fuels. 2000;14(3):566–74. https://doi.org/10.1021/ef990166p .

Sabbah H, Morrow AL, Pomerantz AE, Zare RN. Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels. 2011;25(4):1597–604. https://doi.org/10.1021/ef101522w .

Samieadel A, Oldham D, Fini EH. Investigating molecular conformation and packing of oxidized asphaltene molecules in presence of paraffin wax. Fuel. 2018;220:503–12. https://doi.org/10.1016/j.fuel.2018.02.031 .

Santos Silva H, Sodero ACR, Bouyssiere B, Carrier H, Korb J-P, Alfarra A, Vallverdu G, Bégué D, Baraille I. Molecular dynamics study of nanoaggregation in asphaltene mixtures: effects of the N, O, and S heteroatoms. Energy Fuels. 2016;30(7):5656–64. https://doi.org/10.1021/acs.energyfuels.6b01170 .

Santos Silva H, Alfarra A, Vallverdu G, Bégué D, Bouyssiere B, Baraille I. Sensitivity of asphaltene aggregation toward the molecular architecture under desalting thermodynamic conditions. Energy Fuels. 2017a;32(3):2681–92. https://doi.org/10.1021/acs.energyfuels.7b02728 .

Santos Silva H, Sodero ACR, Korb J-P, Alfarra A, Giusti P, Vallverdu G, Bégué D, Baraille I, Bouyssiere B. The role of metalloporphyrins on the physical-chemical properties of petroleum fluids. Fuel. 2017b;188:374–81. https://doi.org/10.1016/j.fuel.2016.10.065 .

Schuler B, Meyer G, Peña D, Mullins OC, Gross L. Unraveling the molecular structures of asphaltenes by atomic force microscopy. J Am Chem Soc. 2015;137(31):9870–6. https://doi.org/10.1021/jacs.5b04056 .

Schuler B, Fatayer S, Meyer G, Rogel E, Moir M, Zhang Y, Harper MR, et al. Heavy oil based mixtures of different origins and treatments studied by AFM. Energy Fuels. 2017;31(7):6856–61. https://doi.org/10.1021/acs.energyfuels.7b00805 .

Schulze M, Lechner MP, Stryker JM, Tykwinski RR. Aggregation of asphaltene model compounds using a porphyrin tethered to a carboxylic acid. Org Biomol Chem. 2015;13(25):6984–91. https://doi.org/10.1039/C5OB00836K .

Sedghi M, Goual L. Role of resins on asphaltene stability. Energy Fuels. 2009;24(4):2275–80. https://doi.org/10.1021/ef9009235 .

Sedghi M, Goual L, Welch W, Kubelka J. Effect of asphaltene structure on association and aggregation using molecular dynamics. J Phys Chem B. 2013;117(18):5765–76. https://doi.org/10.1021/jp401584u .

Sodero ACR, Santos Silva H, Level PG, Bouyssiere B, Korb J-P, Carrier H, Alfarra A, Bégué D, Baraille I. Investigation of the effect of sulfur heteroatom on asphaltene aggregation. Energy Fuels. 2016;30(6):4758–66. https://doi.org/10.1021/acs.energyfuels.6b00757 .

Strausz OP, Lown EM. The chemistry of Alberta oil sands, bitumens and heavy oils. Calgary: Alberta Energy Research Institute (AERI); 2003.

Subramanian D, May N, Firoozabadi A. Functional molecules and the stability of water-in-crude oil emulsions. Energy Fuels. 2017;31(9):8967–77. https://doi.org/10.1021/acs.energyfuels.7b01039 .

Takanohashi T, Sato S, Saito I, Tanaka R. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates. Energy Fuels. 2003;17(1):135–9. https://doi.org/10.1021/ef0201275 .

Ungerer P, Rigby D, Leblanc B, Yiannourakou M. Sensitivity of the aggregation behaviour of asphaltenes to molecular weight and structure using molecular dynamics. Mol Simul. 2014;40(1–3):115–22. https://doi.org/10.1080/08927022.2013.850499 .

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18. https://doi.org/10.1002/jcc.20291 .

Van Gunsteren WF, Daura X, Mark AE. GROMOS force field. In: Schleyer PVR, et al., editors. Encyclopedia of computational chemistry. Chichester: Wiley; 2002. https://doi.org/10.1002/0470845015.cga011 .

Varadaraj R, Brons C. Molecular origins of crude oil interfacial activity. Part 4: oil–water interface elasticity and crude oil asphaltene films. Energy Fuels. 2012;26(12):7164–9. https://doi.org/10.1021/ef300830f .

Wang J, Gayatri MA, Ferguson AL. Mesoscale simulation and machine learning of asphaltene aggregation phase behavior and molecular assembly landscapes. J. Phys. Chem. B. 2017a;121(18):4923–44. https://doi.org/10.1021/acs.jpcb.7b02574 .

Wang X, Zhang R, Liu L, Qiao P, Simon S, Sjoblom J, et al. Interactions of polyaromatic compounds. Part 2. Flocculation probed by dynamic light scattering and molecular dynamics simulation. Energy Fuels. 2017b;31(9):9201–12. https://doi.org/10.1021/acs.energyfuels.7b01511 .