Asparagine in plants

Annals of Applied Biology - Tập 150 Số 1 - Trang 1-26 - 2007
Peter J. Lea1, Ladaslav Sodek2, M. A. J. Parry3, Peter R. Shewry3, Nigel G. Halford3
1Dept. of Biological Sciences, Lancaster University, Lancaster, UK
2Departamento de Fisiologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
3Crop Performance and Improvement Division, Rothamsted Research, Harpenden, UK

Tóm tắt

Abstract

Interest in plant asparagine has rapidly taken off over the past 5 years following the report that acrylamide, a neurotoxin and potential carcinogen, is present in cooked foods, particularly carbohydrate‐rich foods such as wheat and potatoes which are subjected to roasting, baking or frying at high temperatures. Subsequent studies showed that acrylamide could be formed in foods by the thermal degradation of free asparagine in the presence of sugars in the Maillard reaction. In this article, our current knowledge of asparagine in plants and in particular its occurrence in cereal seeds and potatoes is reviewed and discussed in relation to acrylamide formation. There is now clear evidence that soluble asparagine accumulates in most if not all plant organs during periods of low rates of protein synthesis and a plentiful supply of reduced nitrogen. The accumulation of asparagine occurs during normal physiological processes such as seed germination and nitrogen transport. However, in addition, stress‐induced asparagine accumulation can be caused by mineral deficiencies, drought, salt, toxic metals and pathogen attack. The properties and gene regulation of the enzymes involved in asparagine synthesis and breakdown in plants are discussed in detail.

Từ khóa


Tài liệu tham khảo

10.1046/j.1365-3040.2003.00970.x

10.1093/jexbot/51.348.1289

Amancio S., 1997, Assimilation of nitrate and ammonium by sulphur deficient Zea mays cells, Plant Physiology and Biochemistry, 35, 41

10.1016/j.envexpbot.2005.07.002

10.1021/jf034344v

10.1016/S0031-9422(00)94558-8

10.1104/pp.56.6.807

10.1104/pp.71.4.841

10.1104/pp.86.1.204

10.1016/S0031-9422(97)00319-1

10.1071/FP03173

10.1007/s00726-005-0245-2

10.1111/j.1467-7652.2006.00197.x

10.1111/j.1399-3054.1986.tb03404.x

10.1021/jf020889y

10.1590/S1677-04202005000100003

10.1042/BJ20042091

10.1007/s00217-003-0779-z

Borek D., 1999, Isolation and characterization of cDNA encoding l‐asparaginase from Lupinus luteus (Accession, AF112444), Plant Physiology, 119, 1568

10.1111/j.1432-1033.2004.04254.x

10.1080/09542299.1996.11083272

10.1104/pp.103.4.1285

10.1016/S0168-9452(97)00109-X

10.1080/07352688309382171

10.1007/s00425-006-0245-9

10.1002/jsfa.2740340506

10.1023/B:BIOP.0000033463.98440.db

10.1007/s00425-005-0196-6

10.1007/s11120-004-9366-9

10.1104/pp.59.2.268

10.1071/FP04184

10.1104/pp.102.017830

10.1104/pp.108.3.1321

10.1093/pcp/pch192

10.1016/0003-9861(81)90122-3

10.1046/j.1365-313X.1996.09010001.x

Chibnall A.C, 1939, Protein Metabolism in the Plant

10.1111/j.1399-3054.1972.tb03554.x

10.1271/bbb.67.1188

10.1016/S1568-1637(03)00011-4

10.1007/978-94-011-4431-5_6

10.1104/pp.108.4.1715

Costa G., 1994, Water relations, gas exchange and amino acid content in Cd‐treated lettuce, Plant Physiology and Biochemistry, 32, 561

10.1016/S0168-9452(97)00148-9

10.1042/bj0260235

10.1104/pp.102.4.1337

10.1104/pp.111.3.877

10.1046/j.1365-313X.1993.04020215.x

Delaville M, 1802, Sur les seves d’asperges et de choux, Annales de Chimie (Paris), 41, 298

10.1016/S0176-1617(11)80529-8

10.1111/j.1399-3054.1996.tb00184.x

10.1021/jf050650s

10.1021/jf0521810

10.1007/BF00014503

10.1104/pp.61.4.698

10.1080/01140671.1997.9514006

10.1016/S0925-5214(97)01419-1

10.1016/S0176-1617(96)80117-9

Eason J.R., 2000, Amino acid metabolism in senescing Sandersonia aurantiaca flowers: cloning and characterization of asparagine synthetase and glutamine synthetase cDNAs, Australian Journal of Plant Physiology, 27, 389

10.1104/pp.62.4.531

10.1002/(SICI)1097-0010(199608)71:4<449::AID-JSFA601>3.0.CO;2-N

10.1007/BF00197683

10.1093/treephys/24.6.639

10.1590/S0100-879X2005000700002

10.1111/j.1744-7348.2006.00074.x

10.1104/pp.96.4.1228

Fowden L, 1954, The nitrogen metabolism of groundnut plants: the role of γ‐methyleneglutamine and γ‐methyleneglutamic acid, Annals of Botany, 18, 417, 10.1093/oxfordjournals.aob.a083406

10.1094/CCHEM.2004.81.5.650

10.1021/jf030204

10.1111/j.1399-3054.1984.tb05180.x

10.1016/j.plantsci.2004.07.014

10.1093/jxb/eri229

10.1093/jexbot/49.318.107

10.1111/j.1399-3054.1984.tb05931.x

10.1111/j.1365-313X.1994.00695.x

10.1071/FP05016

10.1007/s00217-003-0753-9

Haase N.U., 2004, Aspects of acrylamide formation in potato crisps, Journal of Applied Botany and Food Quality – Angewandte Botanik, 78, 144

10.1042/bj3640129

10.1046/j.1469-8137.2002.00437.x

10.1016/j.plaphy.2004.05.001

10.1016/j.jplph.2005.10.012

10.1104/pp.93.2.495

Hoff J.E., 1977, The effect of nitrogen fertilization on the composition of the free amino acid pool of potato tubers, American Potato Journal, 48, 391

10.1111/j.1744-7348.2005.040121.x

10.1104/pp.74.3.605

10.1016/0168-9452(85)90022-6

10.1023/A:1005784202450

10.1002/jsfa.2740630414

10.1016/S0308-8146(97)00031-9

IARC, 1994, Acrylamide, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 60, 389

10.1007/BF00395182

10.1104/pp.72.4.1127

10.1016/0003-9861(83)90594-5

10.1078/0176-1617-00312

10.1139/b88-288

10.1104/pp.73.1.165

10.1111/j.1365-2621.2003.tb09641.x

10.1111/j.1399-3054.1981.tb08505.x

10.1104/pp.62.5.815

10.1007/s11120-005-9024-x

10.1104/pp.104.056317

10.1016/S0924-2244(00)89216-X

10.1104/pp.113.4.1125

10.1111/j.1399-3054.1990.tb00058.x

Køie B., 1979, Seed Protein Improvement in Cereals and Grain Legumes, 205

10.1111/j.1399-3054.2005.00578.x

10.1104/pp.106.4.1347

10.1046/j.1365-313x.1998.00302.x

10.1098/rspb.1975.0148

Lea P.J., 1983, Recent Advances in Phytochemistry, 77

10.1016/S0981-9428(03)00060-3

10.1016/S0031-9422(00)94149-9

10.1023/A:1006012005654

10.1016/S0168-9452(03)00251-6

10.1104/pp.009647

10.1111/j.1365-313X.2004.02160.x

10.1016/0031-9422(92)83098-J

10.1007/BF00023386

Ma Y., 1975, Amino acid composition and storage proteins in two new high‐lysine mutants in maize, Cereal Chemistry, 52, 412

10.1093/jexbot/52.361.1665

10.1093/oxfordjournals.pcp.a076329

10.1021/bi052563z

10.1271/bbb.70.1173

McKee H.S, 1962, Nitrogen Metabolism in Plants

10.1111/j.1744-7348.2006.00060.x

10.1016/j.jmb.2006.04.066

10.1002/jpln.1996.3581590102

10.1093/treephys/26.4.527

Misra P.S., 1975, Studies on corn proteins. VII. Free amino acid content of opaque‐2 double mutants, Cereal Chemistry, 52, 844

10.1016/S0167-4781(03)00137-4

Mortensen J., 1993, Sulphur deficiency and amino acid composition in seeds and grass, Phyton – Annales Rei Botanicae, 32, 85

10.1007/BF02037986

10.1007/BF01917181

10.1038/419448a

10.1038/sj.bjc.6600726

Murphy J.J., 1971, Changes in the protein fractions of developing normal and opaque‐2 maize endosperm, Cereal Chemistry, 48, 336

10.1104/pp.66.4.782

10.1007/BF00403035

10.1021/jf0623081

10.1007/s10342-005-0103-5

10.1007/BF00627741

10.1007/s00726-005-0251-4

10.1093/treephys/21.1.59

10.1093/oxfordjournals.pcp.a029626

10.1139/b84-011

10.1271/bbb.69.1232

10.1093/pcp/pch092

10.1002/jsfa.1681

10.1080/00380768.1995.10417020

10.1016/S0167-4781(99)00016-0

10.1007/s004250000513

10.1111/j.1744-7348.2005.00032.x

10.1146/annurev.pp.31.060180.001525

10.1104/pp.63.6.1082

10.1104/pp.67.1.37

10.1104/pp.76.1.59

10.1111/j.1399-3054.1992.tb04660.x

10.1093/jxb/36.4.567

10.1104/pp.82.4.946

10.1007/s004250050418

10.1007/s11103-005-6217-9

10.1071/BI9560539

10.1016/j.tim.2006.02.005

Prianischnikov D.N, 1922, Ueber den Aufbau un Abbau des Asparagins in den Pflanzen, Bericht der Deutschen botanischen Gesellschaft, 40, 242, 10.1111/j.1438-8677.1922.tb07972.x

10.1104/pp.81.3.774

10.1104/pp.74.2.329

10.1104/pp.89.4.1161

10.1002/9780470123188.ch5

10.1016/0031-9422(75)83108-6

10.1016/S0031-9422(00)91013-6

10.1021/jf991006e

10.1016/S0031-9422(01)00200-X

10.1104/pp.94.1.328

10.1093/jxb/44.5.879

10.1021/jf034649

10.1093/jxb/eri079

10.1104/pp.015156

10.1038/ng1543

10.1111/j.1469-8137.1996.tb01150.x

10.1515/bchm2.1898.24.1-2.18

10.1146/annurev.arplant.57.032905.105437

10.1038/263703a0

10.1104/pp.104.043778

10.1093/jxb/erj073

10.1111/j.1744-7348.2005.00009.x

10.1016/S0733-5210(83)80005-8

Shewry P.R., 1987, Mutant Genes that Affect Plant Development, 95

10.1105/tpc.9.8.1339

10.1590/S1516-89132000000300003

10.1248/bpb.28.1590

10.1111/j.1399-3054.1989.tb05477.x

10.1016/S0031-9422(00)97967-6

10.1104/pp.77.2.506

10.1093/jxb/39.6.707

10.1093/jxb/39.6.695

10.1016/0031-9422(88)84071-8

10.1007/0-387-24980-X_28

10.1104/pp.010912

10.1111/j.1469-8137.1987.tb00905.x

10.1104/pp.82.2.390

10.1016/S0031-9422(00)90781-7

10.1021/jf60178a011

10.1104/pp.65.1.22

10.1038/419449a

Stewart G.R., 1980, The Biochemistry of Plants, 609

10.1016/0003-9861(73)90681-4

10.1021/jf034999w

10.1104/pp.80.4.1002

10.1021/jf020302f

10.1021/jf035417d

10.1007/BF00388207

10.1104/pp.103.022780

10.1016/0031-9422(90)87085-9

10.1111/j.1399-3054.1971.tb01465.x

10.1111/j.1399-3054.1976.tb01868.x

10.1002/j.1460-2075.1990.tb08114.x

Tsai F.‐Y., 1991, Light represses transcription of asparagine synthetase genes in photosynthetic and non‐photosynthetic organs of plants, Mo1ecular Cell Biology, 11, 4966

Vauquelin L.N., 1806, The discovery of a new plant principle in Asparagus sativus, Annales de Chimie (Paris), 57, 88

Verdoy D., 2006, Transgenic Medicago truncatula plants that accumulate proline display nitrogen‐fixing activity with enhanced tolerance to osmotic stress, Plant Cell Physiology, 29, 1913

VickeryH.B. PucherG.W. WakemanA.J. LeavenworthC.S. (1937)Chemical changes that occur in leaves during culture in light and darkness.Connecticut Agricultural Experimental Station Bulletin 399.

10.1111/j.1365-2621.2006.tb08886.x

10.1016/j.jplph.2004.07.006

10.1007/BF00020801

10.1104/pp.67.2.301

10.1016/j.lwt.2005.03.005

10.1071/FP03179

10.1071/FP03198

Winkler U., 1980, Amino acid composition of the kernel proteins in barley resulting from nitrogen fertilization at different stages of development, Journal of Agronomy and Crop Science, 149, 503

10.1104/pp.103.033126

10.1098/rspb.1950.0012

10.1007/BF00012066

10.1006/jcrs.1998.0241

10.1021/jf034180i