Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097. doi: 10.1126/science.1204153 .
Alvarez, L. W. (1987). Adventures of a Physicist. New York: Basic Books.
Baer, J. (1994). Why you shouldn’t trust creativity tests. Educational Leadership, 51, 80–83.
Banting, F. (1979). [Banting portfolio.] Northward Journal, nos. 14/15, 21–97.
Batey, M., & Furnham, A. (2006). Creativity, intelligence, and personality: A critical review of the scattered literature. Genetics Society and General Psychology Monographs, 132(4), 355–429.
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Aljoscha, C. (2014). Neubauer intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73–83. doi: 10.1016/j.intell.2014.05.007 .
Bishop, J. M. (2003). How to win a Nobel Prize. An unexpected life in science. Cambridge, M.A.: Harvard University Press.
Blackett, P. M. S. (1933). The craft of experimental physics. In H. Wright (Ed.), Cambridge University Studies (pp. 67–98). London: Ivor Nicholson & Watson.
Blade, M. F. (1963). Creativity in engineering. In M. A. Coler & P. A. BcGee (Eds.), Essays on Creativity in the Sciences (pp. 110–122). New York: New York University Press.
Blade M. F., & Watson W. S. (1955). Increase in spatial visualization test scores during engineering study. Psychological Monographs, 69(12), 1–13. doi: 10.1037/h0093697 .
Burton, J. M., Horowitz, R., & Abeles, H. (2000). Learning in and through the arts: The question of transfer. Studies in art education, 41(3), 228–257. http://www.jstor.org/stable/1320379 .
Claparede, E., & Flournoy, T. (1902, 1904) L’Enseignement Mathematique 4 and 6; translated in part by J. Hadamard as “Inquiry into the working Methods of mathematicians”, in Hadamard, J. (1945). The Psycholoogy of Invention in the Mathematical Field (pp. 135–141). Princeton, NJ: Princeton University Press.
Clark, R. W. (1971). Einstein. The life and times. New York: Crowell.
Quote investigator. http://quoteinvestigator.com/2014/05/22/solve/ .
Cox, C. M. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.
DeFelipe, J., & Jones, E. G. (1992). Santiago Ramon y Cajal and methods in neurohistology. Trends in Neuroscience (TINS), 15(7), 237–246.
DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE Life Sciences Education, 8, 172–181.
Deutsch & Shea Inc. (1957). A Profile of the engineer: A comprehensive study of research relating to the engineer. New York: Industrial Relations Newsletter Inc.
Dewey, J. (1934). Art as experience. New York: Minton, Balch.
Dolev, J. C., Friedlaender, L. K., & Braverman, I. M. (2001). Use of fine art to enhance visual diagnostic skills. JAMA, 286(9), 1020–1021.
Eiduson, B. (1962). Scientists: Their psychological world. New York: Basic Books.
Eiduson, B., & Beckman, L. (Eds.). (1973). Science as a career choice: Theoretical and empirical studies. New York: Russell Sage Foundation.
Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Reviews, 2(4), 290–309.
Ferguson, E. S. (1977). The mind’s eye: Nonverbal thought in technology. Science, 197(4306), 827–835.
Ferguson, E. S. (1994). Engineering and the mind’s eye. Cambridge MA: MIT Press.
Fitzegerald, M., & James, I. (2007). The mind of the mathematician. Baltimore: Johns Hopkins University Press.
Florman, S. C. (1976). The existential pleasures of engineering. New York: St. Martin’s Press.
Gibson, J., & Light, P. (1967). Intelligence among university scientists. Nature, 213 (5075), 441–443. http://dx.doi.org/10.1038/213441a0 .
Gleick, J. (1992). Genius: The life and science of Richard Feynman. New York: Pantheon Books.
Groenendijk, T., Janssen, T., Rijlaarsdam, G., & Van Den Bergh, H. (2013). Learning to be creative. The effects of observational learning on students’ design products and processes. Learning and Instruction, 28, 35–47.
Grossman, S., Deupi, J., & Leitao, K. (2014). Seeing the forest and the trees: Increasing nurse practitioner students’ observational and mindfulness skills. Creative Nursing, 20(1), 67–72.
Gruber, H. E. (1984). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.
Gruber, H. E. (1988a). Networks of enterprise in creative scientific work. In B. Gholson, A. Houtsm, R. A. Neimayer, & W. Shadis (Eds.), Psychology of science and metascience. Cambridge, England: Cambridge University Press.
Gruber, H. E. (1988b). The evolving systems approach to creative work. Creativity Research Journal, 1, 27–51.
Halpine, S. (2004). Introducing molecular visualization to primary schools in California: The STArt! teaching science through art program. Journal of Chemical Education, 81(10), 1431–1436.
Hindle, B. (1981). Emulation and invention. New York: New York University Press.
Hindle, B. (1984). Spatial thinking in the bridge era: John Augustus Roebling versus John Audolphus Etzler. Annals New York Academy Sciences, 424, 131–148.
Hinze, S., Rapp, D., Williamson, V., Shultz, M., Deslongchamps, G., & Williamson, K. (2013). Beyond ball-and-stick: Students’ processing of novel STEM visualizations. Learning and Instruction, 26, 12–21.
Ingles, J., Sambrook, J., & Witkowski, J. A. (2003). Cold Spring Harbor: Cold Spring Harbor Press.
Janos, P. (1987). A fifty year follow-up of Terman’s youngest college students and IQ-matched age mates. Gifted Child Quarterly, 31(2), 55–58.
Jarvinen, M., & Jarvinen, L. (2012). Elevating student potential: Creating digital video to teach neurotransmission. The Journal of Undergraduate Neuroscience Education (JUNE), 11(1), A6–A11.
Jauk, J., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41(4), 212–221. doi: 10.1016/j.intell.2013.03.003 .
Jonides, J. (2008). Arts and cognition monograph: Musical skills and cognition. http://www.dana.org/Publications/ReportDetails.aspx?id=44244 .
Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. New Jersey: Wiley.
Ke, J.-L., Monk, M., & Duschl, R. (2005). Learning introductory quantum physics: Sensori-motor experiences and mental models. International Journal of Science Education, 27(13), 1571–1594.
Kennedy, D. H. (1983). Little Sparrow: A Portrait of Sofya Kovalevskaya. Athens OH: Ohio University Press.
Kirklin, D., Duncan, J., McBride, S., Hunt, S., & Griffin, M. (2007). A cluster design controlled trial of arts-based observational skills training in primary care. Medical Education, 41, 395–401.
Klarreich, E. (2014). Meet the first woman to win math’s most prestigious prize. Quanta Magazine, 08.13.14. http://www.wired.com/2014/08/maryam-mirzakhani-fields-medal/ .
Klugman, C. M., Peel, J., & Beckmann-Mendez, D. (2011). Art Rounds: Teaching interprofessional students visual thinking strategies at one school. Academic Medicine, 86(10), 1266–1271. doi: 10.1097/ACM.0b013e31822c1427 .
Koch, W. E. (1978). The creative engineer. The art of inventing. New York: Plenum.
Lamore, R., Root-Bernstein, R. S., Lawton, J., Schweitzer, J., Root-Bernstein, M. M., Roraback, E., et al. (2013). Arts and crafts: Critical to economic innovation. Economic Development Quarterly, 27(3), 221–229.
Li, W., Li, X., Huang, L., Kong, X,. Yang, W., & Wei, D.(2014). Brain structure links trait creativity to openness to experience. Social, Cognitive and Affective Neuroscience. [Epub ahead of print].
MacKinnon, D. W. (1961). Fostering creativity in students of engineering. Journal of Engineering Education, 53(3), 129–142.
Mandelbrot, B. B. (2012). The Fractalist. Memoir of a Scientific Maverick. New York: Pantheon Books.
Mangione, S., & Nieman, L. Z. (1997). Cardiac auscultatory skills of internal medicine and family practice trainees. A comparison of diagnostic proficiency. JAMA, 278(9), 717–722.
Mangione, S., & Nieman, L. Z. (1999). Pulmonary auscultatory skills during training in internal medicine and family practice. American Journal of Respiratory Critical Care Medicine, 159, 1119–1124.
Mansfield, R. S., & Busse, T. V. (1981). The psychology of creativity and discovery. Scientists and their work. Chicago: Nelson-Hall.
Milgram, R., & Hong, E. (1993). Creative thinking and creative performance in adolescents as predictors of creative attainments in adults: A follow-up study after 18 years. In R. Subotnik & K. Arnold (Eds.), Beyond Terman: Longitudinal studies in contemporary gifted education. Norwood, N.J.: Ablex.
Möbius, P. J. (1904). Ueber die Anlage zur Mathematik. Berlin: Paul Julius.
Naghshineh, S., Hafler, J. P., Miller, A. R., Blanco, M. A., Lipsitz, S. R., Dubroff, R. P., et al. (2008). Formal art observation training improves medical students’ visual diagnostic skills. Journal of General Internal Medicine, 23(7), 991–997. doi: 10.1007/s11606-008-0667-0 .
New England, Consultants, Inc. (1962). The engineer today. Boston: New England Consultants.
Parnes, S. J., & Meadow, A. (1963). Development of individual creative talent. In C. W. Taylor & F. Barron (Eds.), Scientific creativity. Its recognition and development (pp. 311–320). New York: Wiley.
Perry, M., Maffulli, N., Willson, S., & Morrissey, D. (2011). The effectiveness of arts-based interventions in medical education: A literature review. Medical Education, 45(2), 141–148. doi: 10.1111/j.1365-2923.2010.03848.x .
Petroski, H. (1996). Invention by design. How engineers get from thought to thing. Cambridge, MA: Harvard University Press.
Planck, M. (1949). Scientific autobiography and other papers. Translated by Frank Gaynor. New York: Philosophical Library.
Platt, W., & Baker, R. A. (1931). The relationship of the scientific “hunch” to research. Journal of Chemical Education, 8, 1969–2002.
Ramon y Cajal, S. (1951). Precepts and counsels on scientific investigation: Stimulants of the Spirit (J. M. Sanchez-Perez, Trans.). Mountain View, CA: Pacific Press Publishing Association.
Robinson, A. (2011). Is high intelligence necessary to be a genius? psychology today blog “sudden genius”. http://www.psychologytoday.com/blog/sudden-genius/201101/is-high-intelligence-necessary-be-genius .
Roe, A. (1953). The making of a scientist. New York: Dodd Mead.
Root-Bernstein, R. S. (1989). Discovering. Inventing and solving problems at the frontiers of science. Cambridge, MA: Harvard University Press.
Root-Bernstein, R. S. (2003). Polymathy in creative adults. In L. Shavanina (Ed.), The handbook of giftedness (pp. 267–278). New York: Springer Science.
Root-Bernstein, R. S. (2009). Polymathy. In B. Kerr (Ed.), Encyclopedia of giftedness, creativity and talent (pp. 685–687). New York: Sage.
Root-Bernstein, R. S., & Root-Bernstein, M. M. (1999). Sparks of Genius. Boston: Houghton Mifflin.
Root-Bernstein, M. M., & Root-Bernstein, R. S. (2003). Martha Graham and the polymathic imagination: A case of multiple intelligences or universal tools for thinking? Journal of Dance Education, 3, 16–27.
Root-Bernstein, R. S., & Root-Bernstein, M. M. (2004). Artistic scientists and scientific artists: The link between polymathy and creativity. In R. Sternberg, E. L. Grigorenko, & J. L. Singer (Eds.), Creativity: From potential to realization (pp. 127–151). Washington, DC: American Psychological Association.
Root-Bernstein, R. S., & Root-Bernstein, M. M. (2011). Life stages of creativity. In M. Runco & S. Pritzker (Eds.), The encyclopedia of creativity (2nd ed., pp. 47–55). Oxford: Elsevier.
Root-Bernstein, R. S., Bernstein, M., & Schlichting, H. W. (Eds.). (1993). Identification of scientists making long–term, high impact contributions, with notes on their methods of working, Creativity Research Journal 6 (4): 329–343. Reprinted in R. D. Smith, scientific work and creativity: Advice from the masters (pp. 323–330). Clearwater, FL: Citizen Scientists League.
Root-Bernstein, R. S., Bernstein, M., & Garnier, H. W. (1995). Correlations between avocations, scientific style, and professional impact of thirty–eight scientists of the Eiduson study. Creativity Research Journal, 8, 115–137.
Root-Bernstein, R. S., Allen, L., Beach, L., Bhadula, R., Fast, J., Hosey, D., et al. (2008). Arts foster success: Comparison of Nobel Prizewinners, royal society, national academy, and sigma Xi members. Journal of the Psychology of Science and Technology, 1(2), 51–63.
Root-Bernstein, R. S., Lamore, R., Lawton, J., Schweitzer, J., Root-Bernstein, M. M., Roraback, E., et al. (2013). Arts, crafts and STEM innovation: A network approach to understanding the creative knowledge economy. In M. Rush (Ed.), Creative communities: Art works in economic development (pp. 97–117). Washington DC: National Endowment for the Arts and The Brookings Institution.
Rossman, J. (1964). Industrial creativity. The psychology of the inventor. New Hyde Park, NY: University Books.
Saunders, D. R. (1963). Some measures related to success and placement in basic engineering research and development. In C. W. Taylor & F. Barron (Eds.), Scientific Creativity. Its recognition and development (pp. 321–329). New York: Wiley.
Sayen, J. (1985). Einstein in America. New York: Crown.
Schellenberg, E. G. (2004). Music lessons enhance IQ. American Psychological Society, 15(8), 511–514.
Seagoe, M. (1975). Terman and the gifted. Los Altos, CA: W. Kaufmann.
Shurkin, J. N. (2008). Broken Genius: The rise and fall of William Shockley, creator of the electronic age. New York: Palgrave Macmillan.
Sorby, S. (2009a). Developing spatial cognitive skills among middle school students. Cognitive Processing, 10(2), 312–315.
Sorby, S. A. (2009b). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480.
Sorby, S., & Baartmans, B. (1996). A course for the development of 3-D spatial visualization skills. Engineering Design Graphics Journal, 60(1), 13–20.
Sorby, S., & Baartmans, B. (2000). The development and assessment of a course for enhancing the 3-D spatial visualization skills of first-year engineering students. Journal of Engineering Education, 89(3), 301–307.
Southgate, D., & Roscigno, V. (2009). The impact of music on childhood and adolescent achievement. Social Science Quarterly, 90(1), 4–21. doi: 10.1111/j.154076237.2009.00598 .
Subotnik, R. F., Karp, D. E., & Morgan, E. R. (1989). High IQ children at midlife: An investigation into the generalizability of Terman’s genetic studies. Roeper Review, 11(3), 139–144.
Taylor, D. W. (1963). Variables related to creativity and productivity among men in two research laboratories. In C. W. Taylor & F. Barron (Eds.), Scientific creativity: Its recognition and development (pp. 228–250). New York: Wiley.
Terman, L., & Oden, M. H. (1959). The gifted group at mid-life: Thirty-five years follow-up of the superior child. San Jose, CA.: Stanford University Press.
Urbain, G. (1924). Le Tombeau d’Aristoxene. Essai sur la Musique, Paris: Doin.
Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? In B. Ross (Ed.), Psychology of Learning and Motivation (Vol. 57, pp. 147–181). Oxford: Academic Press.
Vertesi, J. (2012). Seeing like a Rover: Visualization, embodiment, and the interaction on the Marse Exploration Rover Mission. Social Studies of Science, 42(3), 393–313. doi: 10.1177/0306312712444645 .
Visher, Stephen S. (1947). Scientists starred 1903–1943. In: American mens of science (pp. 106–107). Baltimore: Johns Hopkins Press.
Weisburd, S. (1987). The spark. Personal testimonials of creativity. Science News, 132, 298–300.
Wilson, M. (1972). Passion to Know. Garden City, NY: Doubleday.
Wilson RR. (1992). Starting Fermilab. http://history.fnal.gov/GoldenBooks/gb_wilson2.html .
Wolf, G. (1993). Steve Jobs: The next insanely great thing. Wired Magazine. http://archive.wired.com/wired/archive/4.02/jobs_pr.html .