Phân tích tỷ lệ tăng cường động mạch trong việc đánh giá hiệu quả điều trị và sống sót ở bệnh nhân ung thư biểu mô tế bào gan được điều trị bằng DEB-TACE

Cancer Imaging - Tập 22 Số 1 - 2022
Bin Chai1, Dandan Xiang1, Wei Wang1, Yanqiao Ren1, Fuquan Wang1, Jihua Wang1, Guofeng Zhou1, Chuansheng Zheng2
1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
2Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China

Tóm tắt

Tóm tắt Đặt vấn đề

Tỷ lệ tăng cường động mạch (AEF), được xác định từ các chụp CT ba pha, được coi là phản ánh gián tiếp tỷ lệ tưới máu động mạch gan so với tổng tưới máu. Mục đích của nghiên cứu này là điều tra hồi cứu mối quan hệ giữa AEF và đáp ứng điều trị cũng như sống sót ở bệnh nhân ung thư biểu mô tế bào gan (HCC) được điều trị bằng TACE bằng biện pháp thả hạt thuốc (DEB).

Phương pháp

AEF của tổn thương chính (AEFpre) và khối u còn lại (AEFpost) ở 158 bệnh nhân HCC được lấy từ các xét nghiệm CT gan ba pha trước và sau điều trị. Phép thử Wilcoxon đã được sử dụng để so sánh AEFpre và AEFpost cho các nhóm đáp ứng khác nhau. Các đường cong sống sót toàn bộ (OS) ở bệnh nhân có AEF khác nhau được tạo ra bằng phương pháp Kaplan-Meier. Phân tích hồi quy Cox được sử dụng để xác định mối liên hệ giữa AEF và OS.

Kết quả

Không có mối tương quan nào giữa AEFpre và đáp ứng điều trị. Sau khi DEB-TACE, AEFpost thấp hơn đáng kể so với AEFpre ở cả nhóm đáp ứng một phần (38.9% so với 52.7%, p <  0.001) và nhóm bệnh ổn định (49.3% so với 52.1%, p = 0.029). Trong nhóm bệnh tiến triển, AEFpost có giá trị cao hơn AEFpre (55.5% so với 53.0%, p = 0.604). Phân tích hồi quy Cox cho thấy nguy cơ tử vong tăng lên ở bệnh nhân có AEFpre > 57.95% (HR = 1.66, p = 0.019) hoặc AEFpost > 54.85% (HR = 2.47, p <  0.001), và nguy cơ giảm ở bệnh nhân có bất kỳ sự giảm nào trong AEF khối u (tỷ lệ giảm  0) và có AEF tăng nhưng không vượt quá tỷ lệ 0.102 (tỷ lệ tăng <  0.102) (HR = 0.32, p <  0.001).

Kết luận

Sự thay đổi trong AEF của khối u khả thi có tương quan với đáp ứng của HCC đối với DEB-TACE. Ngoài ra, AEF có thể là một yếu tố dự đoán hữu ích trong các nghiên cứu tương lai về điều trị thuyên tắc cho HCC.

Từ khóa


Tài liệu tham khảo

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE study. Liver Int. 2015;35(9):2155–66.

Llovet JM, Lencioni R. mRECIST for HCC: performance and novel refinements. J Hepatol. 2020;72(2):288–306.

Monsky WL, Kim I, Loh S, Li CS, Greasby TA, Deutsch LS, et al. Semiautomated segmentation for volumetric analysis of intratumoral ethiodol uptake and subsequent tumor necrosis after chemoembolization. AJR Am J Roentgenol. 2010;195(5):1220–30.

Gregory J, Dioguardi Burgio M, Corrias G, Vilgrain V, Ronot M. Evaluation of liver tumour response by imaging. JHEP Rep. 2020;2(3):100100.

Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology. 2014;272(2):322–44.

Perfahl H, Jain HV, Joshi T, Horger M, Malek N, Bitzer M, et al. Hybrid modelling of Transarterial chemoembolisation therapies (TACE) for hepatocellular carcinoma (HCC). Sci Rep. 2020;10(1):10571.

Popovic P, Leban A, Kregar K, Garbajs M, Dezman R, Bunc M. Computed tomographic perfusion imaging for the prediction of response and survival to Transarterial chemoembolization of hepatocellular carcinoma. Radiol Oncol. 2018;52(1):14–22.

Tamandl D, Waneck F, Sieghart W, Unterhumer S, Kolblinger C, Baltzer P, et al. Early response evaluation using CT-perfusion one day after transarterial chemoembolization for HCC predicts treatment response and long-term disease control. Eur J Radiol. 2017;90:73–80.

Kim KW, Lee JM, Kim JH, Klotz E, Kim HC, Han JK, et al. CT color mapping of the arterial enhancement fraction of VX2 carcinoma implanted in rabbit liver: comparison with perfusion CT. AJR Am J Roentgenol. 2011;196(1):102–8.

Boas FE, Kamaya A, Do B, Desser TS, Beaulieu CF, Vasanawala SS, et al. Classification of hypervascular liver lesions based on hepatic artery and portal vein blood supply coefficients calculated from triphasic CT scans. J Digit Imaging. 2015;28(2):213–23.

Kim KW, Lee JM, Klotz E, Park HS, Lee DH, Kim JY, et al. Quantitative CT color mapping of the arterial enhancement fraction of the liver to detect hepatocellular carcinoma. Radiology. 2009;250(2):425–34.

Joo I, Lee JM, Kim KW, Klotz E, Han JK, Choi BI. Liver metastases on quantitative color mapping of the arterial enhancement fraction from multiphasic CT scans: evaluation of the hemodynamic features and correlation with the chemotherapy response. Eur J Radiol. 2011;80(3):e278–83.

Mahnken AH, Klotz E, Schreiber S, Bruners P, Isfort P, Gunther RW, et al. Volumetric arterial enhancement fraction predicts tumor recurrence after hepatic radiofrequency ablation of liver metastases: initial results. AJR Am J Roentgenol. 2011;196(5):W573–9.

Boas FE, Brody LA, Erinjeri JP, Yarmohammadi H, Shady W, Kishore S, et al. Quantitative measurements of enhancement on Preprocedure Triphasic CT can predict response of colorectal liver metastases to Radioembolization. AJR Am J Roentgenol. 2016;207(3):671–5.

European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.

Chan AW, Chan SL, Wong GL, Wong VW, Chong CC, Lai PB, et al. Prognostic nutritional index (PNI) predicts tumor recurrence of very early/early stage hepatocellular carcinoma after surgical resection. Ann Surg Oncol. 2015;22(13):4138–48.

Holm S. A simple sequentially Rejective multiple test procedure. Scand J Stat. 1979;6(2):65–70.

Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. Plos One. 2012;7(12):e51862.

Kudo M, Izumi N, Kokudo N, Matsui O, Sakamoto M, Nakashima O, et al. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig Dis. 2011;29(3):339–64.

Pandharipande PV, Krinsky GA, Rusinek H, Lee VS. Perfusion imaging of the liver: current challenges and future goals. Radiology. 2005;234(3):661–73.

Jiang T, Kambadakone A, Kulkarni NM, Zhu AX, Sahani DV. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Investig Radiol. 2012;47(1):11–7.

Ippolito D, Fior D, Bonaffini PA, Capraro C, Leni D, Corso R, et al. Quantitative evaluation of CT-perfusion map as indicator of tumor response to transarterial chemoembolization and radiofrequency ablation in HCC patients. Eur J Radiol. 2014;83(9):1665–71.

Chen G, Ma DQ, He W, Zhang BF, Zhao LQ. Computed tomography perfusion in evaluating the therapeutic effect of transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol. 2008;14(37):5738–43.

Kaufmann S, Horger T, Oelker A, Kloth C, Nikolaou K, Schulze M, et al. Characterization of hepatocellular carcinoma (HCC) lesions using a novel CT-based volume perfusion (VPCT) technique. Eur J Radiol. 2015;84(6):1029–35.

Kang SE, Lee JM, Klotz E, Kim KW, Kim JH, Han JK, et al. Quantitative color mapping of the arterial enhancement fraction in patients with diffuse liver disease. AJR Am J Roentgenol. 2011;197(4):876–83.

Mao X, Guo Y, Wen F, Liang H, Sun W, Lu Z. Applying arterial enhancement fraction (AEF) texture features to predict the tumor response in hepatocellular carcinoma (HCC) treated with Transarterial chemoembolization (TACE). Cancer Imaging. 2021;21(1):49.