Arterial Calcification in Diabetes Mellitus

Arteriosclerosis, Thrombosis, and Vascular Biology - Tập 37 Số 2 - Trang 205-217 - 2017
John N. Stabley1, Dwight A. Towler2
1John N. Stabley From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.
2Dwight A. Towler From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.

Tóm tắt

Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden—increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus—impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses—responses activated by the dysmetabolic state—to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial–mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights—and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications.

Từ khóa


Tài liệu tham khảo

10.1038/nrendo.2012.36

10.1161/ATVBAHA.113.302070

10.1097/MNH.0000000000000132

10.1161/ATVBAHA.116.307302

10.2337/dc09-1813

10.1161/01.ATV.16.8.978

10.1161/STROKEAHA.116.012949

10.1161/HYPERTENSIONAHA.115.06610

10.1212/WNL.0000000000001655

10.1161/CIRCULATIONAHA.113.008285

10.1073/pnas.1202529109

10.1161/CIRCULATIONAHA.105.598086

10.1111/dme.12958

10.1093/rheumatology/kev198

10.1007/s00125-002-0920-8

10.2337/diabetes.49.9.1571

10.1016/j.jvs.2012.02.042

10.1161/01.ATV.11.4.958

10.2337/db10-0328

10.1007/BF03347077

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–546.

10.1161/CIRCRESAHA.114.302968

10.1161/CIRCRESAHA.116.308301

10.1016/j.celrep.2016.03.003

10.1074/jbc.M113.516237

10.1016/S0140-6736(15)00728-X

10.1016/j.cardiores.2006.11.001

10.1371/journal.pone.0085922

10.1161/CIRCRESAHA.110.219071

10.1161/CIRCRESAHA.110.236596

10.1016/j.ajpath.2015.03.020

10.1161/CIRCRESAHA.112.267237

10.1073/pnas.180309597

10.1007/s11154-006-9001-5

Bennett RA, Pegg AE. Alkylation of DNA in rat tissues following administration of streptozotocin. Cancer Res. 1981;41:2786–2790.

10.1161/CIRCRESAHA.111.300543

Havelek R, Soukup T, Ćmielová J, Seifrtová M, Suchánek J, Vávrová J, Mokrý J, Muthná D, Řezáčová M. Ionizing radiation induces senescence and differentiation of human dental pulp stem cells. Folia Biol (Praha). 2013;59:188–197.

Ong DS, Aertker RA, Clark AN, Kiefer T, Hughes GC, Harrison JK, Bashore TM. Radiation-associated valvular heart disease. J Heart Valve Dis. 2013;22:883–892.

10.3275/7865

10.1186/1471-2261-13-13

10.1161/HYPERTENSIONAHA.109.134205

10.1016/j.carpath.2012.06.007

10.1038/ncomms2087

10.1161/01.HYP.0000171472.24422.33

10.1016/j.atherosclerosis.2012.01.019

10.1161/01.ATV.15.12.2265

10.1016/S0021-9150(98)00325-6

10.1161/CIRCRESAHA.115.306751

10.1038/nm.2252

10.1073/pnas.0604203103

10.1161/CIRCRESAHA.110.234088

10.1161/CIRCRESAHA.113.301036

10.1089/scd.2015.0049

10.1089/scd.2014.0163

10.1161/CIRCRESAHA.108.183053

10.1093/cvr/cvs126

10.1161/CIRCRESAHA.115.307407

10.1900/RDS.2015.12.48

10.1007/BF00251822

10.1007/s11999-015-4323-9

10.1089/scd.2012.0711

10.1007/s12015-011-9255-5

10.1093/ilar/ilt052

10.1016/j.nbd.2007.07.022

10.1002/path.4519

10.1016/j.yjmcc.2015.02.024

10.1074/jbc.273.46.30427

10.1074/jbc.M308825200

10.1172/JCI24140

10.1161/ATVBAHA.107.153668

10.1161/CIRCRESAHA.110.219899

10.1152/ajpendo.2002.282.1.E207

10.1172/JCI2849

10.1172/JCI10370

Norheim F, Hui ST, Kulahcioglu E, Mehrabian M, Cantor RM, Pan C, Parks BW, Lusis AJ. Genetic and hormonal control of hepatic steatosis in female and male mice [published online ahead of print November 3, 2016]. J Lipid Res.

10.1152/ajpregu.00136.2016

10.1210/en.2008-0760

10.1038/srep24807

10.1161/01.ATV.0000074878.29805.D0

10.1002/jbmr.2420

10.1002/0470846658.ch9

10.1038/sj.cr.7290185

10.1172/JCI116391

10.1161/01.CIR.92.8.2163

10.1073/pnas.102650499

10.2337/db14-0326

10.1242/dev.085225

10.1161/01.ATV.0000220441.42041.20

10.1161/01.RES.0000227550.00426.60

10.1210/en.2012-1216

10.1177/0003319715583205

10.1161/CIRCRESAHA.110.223875

10.1161/ATVBAHA.115.302072

10.5551/jat.7120

10.1002/jcb.22948

10.1093/cvr/cvw062

10.1159/000370250

10.1210/jc.2005-2559

10.1161/ATVBAHA.114.304306

10.1161/ATVBAHA.110.217745

10.1159/000324693

10.1371/journal.pbio.1000097

10.1016/j.atherosclerosis.2013.02.023

10.1161/ATVBAHA.114.303508

10.1159/000438873

10.1093/ndt/gfu259

10.1161/CIRCRESAHA.107.154401

10.1073/pnas.93.13.6393

10.1172/JCI5656

10.1074/jbc.M115.642041

10.2174/1570161112666141126150948

10.1186/1475-2840-10-59

10.1111/j.1365-2362.2006.01663.x

10.1681/ASN.2004100835

10.1053/j.ackd.2006.10.005

10.1097/01.ASN.0000129337.50739.48

10.1681/ASN.2014020169

10.1113/JP271340

10.1161/CIRCRESAHA.116.305012

10.1186/s12882-015-0019-3

10.1681/ASN.2006050490

10.1002/(SICI)1097-4652(200007)184:1<37::AID-JCP4>3.0.CO;2-M

10.1530/JOE-14-0514

10.1007/s00198-015-3460-z

10.1152/ajprenal.00607.2010

10.1161/CIRCRESAHA.115.306341

10.1016/j.cell.2006.06.044

10.1161/01.RES.0000171451.88616.c2

10.2337/dc13-2101

10.1007/s00198-012-2229-x

10.1161/JAHA.114.001620

10.1359/JBMR.041221

10.1371/journal.pone.0132302

10.1016/j.cmet.2014.04.018

10.1161/ATVBAHA.111.237834

10.1016/j.febslet.2008.03.053

10.1161/CIRCRESAHA.117.306712

10.1186/s12882-016-0265-z

10.1161/01.RES.0000074881.56564.46

10.1210/jc.2011-1251

10.1194/jlr.R043414

10.1016/j.jacc.2010.05.050

10.1371/journal.pone.0156891

10.1038/sj.ki.5002059

10.1111/j.1523-1755.2005.00600.x

10.1016/j.jacc.2015.01.036

10.1161/01.ATV.0000158943.79580.9d

10.1161/CIRCGENETICS.108.797704

10.1359/jbmr.2003.18.1.88

10.1371/journal.pone.0143686

10.1161/JAHA.115.002779

10.1053/j.ajkd.2009.12.039

10.1001/jamainternmed.2013.3283

10.1056/NEJMoa0912923

10.1161/CIRCULATIONAHA.110.006767

10.1161/ATVBAHA.114.302523

10.1016/j.atherosclerosis.2016.07.912

10.1016/j.jcmg.2011.04.011

10.1212/WNL.0000000000002368

10.1161/01.ATV.0000059406.92165.31

10.1093/ndt/gfp137

10.1126/scitranslmed.aad0015

10.1016/j.atherosclerosis.2010.07.047

10.1126/science.1136370

10.1016/S0140-6736(13)60897-1

10.2215/CJN.12891211

10.1161/CIRCULATIONAHA.105.553198

10.1155/2015/468627

10.1016/j.bbadis.2013.05.017

10.1007/s11892-016-0782-y

10.1186/s12933-015-0257-5

10.1167/iovs.15-16470

10.1371/journal.pone.0127352

10.1161/ATVBAHA.113.301928

10.1016/j.tcm.2012.07.002

10.1161/01.CIR.102.21.2636

10.1016/j.bbrc.2009.12.027

10.1007/s12350-014-9946-9

10.3109/0886022X.2011.599913

10.1093/ehjci/jev086

10.1161/CIRCIMAGING.110.958884

10.1016/j.atherosclerosis.2010.01.007

10.1371/journal.pone.0131138

10.1016/j.metabol.2015.04.003

10.3748/wjg.v20.i37.13306

10.1016/j.atherosclerosis.2016.01.016

10.1016/j.jcmg.2011.12.015

10.2337/dc10-1681

10.2337/db08-1515

10.1161/ATVBAHA.116.307385

10.1016/j.atherosclerosis.2014.07.008

10.1002/path.2101

10.1007/s11517-008-0359-2

10.5551/jat.13.114

10.1159/000381795

10.1093/cvr/cvs325

10.1194/jlr.M014092

10.1371/journal.pone.0128996

10.2337/db08-0083

Costache G, Popov D, Georgescu A, Cenuse M, Jinga VV, Simionescu M. The effects of simultaneous hyperlipemia-hyperglycemia on the resistance arteries, myocardium and kidney glomeruli. J Submicrosc Cytol Pathol. 2000;32:47–58.

Simionescu M, Popov D, Sima A, Hasu M, Costache G, Faitar S, Vulpanovici A, Stancu C, Stern D, Simionescu N. Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model. The hyperlipemic-hyperglycemic hamster. Am J Pathol. 1996;148:997–1014.

10.1161/ATVBAHA.111.230011

10.1097/01.ASN.0000068404.57780.DD

10.1097/FJC.0000000000000035

10.1016/j.atherosclerosis.2011.08.035

10.1016/j.celrep.2015.09.028

10.1186/ar4367

Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med. 2010;60:300–315.

10.3945/an.115.011189

10.1016/j.jcmg.2015.02.026

10.1186/1749-8090-9-2

10.1186/s12986-015-0024-3