Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu ức chế aromatase bằng các hợp chất hóa học từ Juniperus procera: nghiên cứu docking phân tử
Springer Science and Business Media LLC - Trang 1-7 - 2024
Tóm tắt
Bước chính trong sự tổng hợp estrogen là hoạt động của enzym aromatase. Nhiều bệnh lý ác tính, bao gồm ung thư vú, đã được liên kết với việc khởi đầu và tiến triển của sự quá biểu hiện estrogen. Exemestane, Arimidex và Femara là những chất ức chế aromatase phổ biến nhất được sử dụng để điều trị ung thư vú phụ thuộc hormone. Kháng thuốc và các tác dụng phụ thường liên quan đến những phương pháp điều trị này. Mục tiêu của nghiên cứu in silico này là liệt kê các hợp chất hóa học của Juniperus procera đã được công bố trong các tài liệu khoa học. Mục tiêu thứ hai là đánh giá hoạt tính ức chế của 124 phytochemicals từ Juniperus procera so với các chất ức chế aromatase đã biết như Exemestane, Arimidex và Femara. Cấu trúc 3D của aromatase (PDB id: 3s7s) được sử dụng cho các nghiên cứu docking bằng cách sử dụng công cụ AutoDock cũng như các nghiên cứu phân tích chế độ bình thường sử dụng máy chủ web NMSim. Juniperolide, acid Kaurenoic và acid Isocupressic đã được xác định là các chất ức chế aromatase cạnh tranh so với các thuốc chống ung thư được FDA phê duyệt, cụ thể là Exemestane, Arimidex và Femara. Sự ổn định của giao diện ligand–protein đã được nghiên cứu nhằm hỗ trợ các phát hiện từ quá trình docking. Theo hiểu biết của chúng tôi, đây là nghiên cứu đầu tiên điều tra các vai trò ức chế khả thi của một số hợp chất từ Juniperus procera đối với enzym aromatase.
Từ khóa
#Juniperus procera #ức chế aromatase #ung thư vú #phytochemicals #nghiên cứu docking phân tửTài liệu tham khảo
El-Said H, Ashgar SS, Bader A, AlQathama A, Halwani M, Ascrizzi R, Flamini G (2021) Essential oil analysis and antimicrobial evaluation of three aromatic plant species growing in Saudi Arabia. Molecules 26(4):959
Abdelghany TM, Hassan MM, El-Naggar MA, Abd El-Mongy M (2020) GC/MS analysis of Juniperus procera extract and its activity with silver nanoparticles against Aspergillus flavus growth and aflatoxins production. Biotechnol Reports 27:e00496
Alkhedaide AQ (2018) Preventive effect of Juniperus procera extract on liver injury induced by lithocholic acid. Cell Mol Biol (Noisy-le-grand) 64(13):63–68
Muhammad I, Mossa JS, Al-Yahya MA, Ramadan AF, El-Feraly FS (1995) Further antibacterial diterpenes from the bark and leaves of Juniperus procera Hochst. ex Endl. Phytother Res 9(8):584–588
Mossa JS, El-Feraly FS, Muhammad I (2004) Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytother Res 18(11):934–937
Nduati TW, Wagara IN, Walyambillah W, Were B and Matasyoh JC (2023) Bioactive compounds from Juniperus procera (Cupressaceae) with activity against common bean bacterial pathogens
Alhayyani S, Akhdhar A, Asseri AH, Mohammed AM, Hussien MA, Roselin LS et al (2023) Potential anticancer activity of Juniperus procera and molecular docking models of active proteins in cancer cells. Molecules 28(5):2041
Das AP, Agarwal SM (2023) Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches. Mol Divers. https://doi.org/10.1007/s11030-022-10590-7
Pichersky E, Raguso RA (2018) Why do plants produce so many terpenoid compounds? New Phytol 220(3):692–702
Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414
Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2(3):251–286
Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M et al (2017) Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22(1):70
Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O et al (2019) Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol 5(12):1749–1768
Zaorsky NG, Churilla TM, Egleston BL, Fisher SG, Ridge JA, Horwitz EM, Meyer JE (2017) Causes of death among cancer patients. Ann Oncol 28(2):400–407. https://doi.org/10.1093/annonc/mdw604
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660
Abu-Helalah M, Mustafa H, Alshraideh H, Alsuhail AI, Almousily OA, Al-Abdallah R et al (2022) Quality of life and psychological wellbeing of breast cancer survivors in the kingdom of Saudi Arabia. Asian Pacific J Cancer Prevent 23(7):2291
Abdelbasset WK, Ibrahim AA, Alsubaie SF, Alrawaili SM, Althomali OW, Hussein HM (2023) Awareness and knowledge of breast cancer rehabilitation among Saudi Arabia physical therapists. Eur Rev Med Pharmacol Sci 27(12):5370–5377
Zughaibi TA, Mirza AA, Suhail M, Jabir NR, Zaidi SK, Wasi S & Tabrez S (2022) Evaluation of anticancer potential of biogenic copper oxide nanoparticles (CuO NPs) against breast cancer. J Nanomater 2022:5326355. https://doi.org/10.1155/2022/5326355
Shoaib TH, Ibraheem W, Abdelrahman M, Osman W, Sherif AE, Ashour A et al (2023) Exploring the potential of approved drugs for triple-negative breast cancer treatment by targeting casein kinase 2: insights from computational studies. PLoS ONE 18(8):e0289887
Sufyan M, Shokat Z, Ashfaq UA (2023) Artificial intelligence in cancer diagnosis and therapy: current status and future perspective. Comput Biol Med 165:107356
Alhadrami HA, Sayed AM, Melebari SA, Khogeer AA, Abdulaal WH, Al-Fageeh MB et al (2021) Targeting allosteric sites of human aromatase: a comprehensive in-silico and in-vitro workflow to find potential plant-based anti-breast cancer therapeutics. J Enzyme Inhibit Med Chem 36(1):1334–1345
El-Kersh DM, Ezzat SM, Salama MM, Mahrous EA, Attia YM, Ahmed MS, Elmazar MM (2021) Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci Rep 11(1):1–14
Maslikah SI, Lestari SR, Amin M & Amalia A (2021) Anticancer activity of phenolic leaves of Bidara (Ziziphus mauritiana) against breast cancer by in silico. In AIP Conference Proceedings (Vol. 2353, No. 1, p. 030042). AIP Publishing LLC
Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N Engl J Med 348(24):2431–2442
Grizzi G, Ghidini M, Botticelli A, Tomasello G, Ghidini A, Grossi F et al (2020) Strategies for increasing the effectiveness of aromatase inhibitors in locally advanced breast cancer: an evidence-based review on current options. Cancer Manage Res 12:675–686
Sood A, Lang DK, Kaur R, Saini B, Arora S (2021) Relevance of aromatase inhibitors in breast cancer treatment. Curr Top Med Chem 21(15):1319–1336
Dawood HM, Shawky E, Hammoda HM, Metwally AM & Ibrahim RS (2021) Development of a validated HPTLC‐bioautographic method for evaluation of aromatase inhibitory activity of plant extracts and their constituents. Phytochem Anal
Dawood HM, Ibrahim RS, Shawky E, Hammoda HM, Metwally AM (2018) Integrated in silico-in vitro strategy for screening of some traditional Egyptian plants for human aromatase inhibitors. J Ethnopharmacol 224:359–372
Dawood HM, Shawky E, Hammoda HM, Metwally AM, Ibrahim RS (2020) Chemical constituents from artemisia annua and vitex agnus-castus as new aromatase inhibitors: in-vitro and in-silico studies. J Mex Chem Soc 64(4):316–326
Pouget C, Fagnere C, Basly JP, Besson AE, Champavier Y, Habrioux G, Chulia AJ (2002) Synthesis and aromatase inhibitory activity of flavanones. Pharm Res 19:286–291
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34(4):1000–1008
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43(W1):W443–W447
Hsu KC, Chen YF, Lin SR, Yang JM (2011) iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform 12:1–11
Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, Schroeder M (2021) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49(W1):W530–W534
Krüger DM, Ahmed A, Gohlke H (2012) NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res 40(W1):W310–W316
Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1):W257–W263
Pyne S, Gayathri P (2005) Geometric methods in molecular docking. Bioinform India J 3:11–12
Singgih M, Permana B, Maulidya SAI, Yuliana A (2019) Studi In Silico Metabolit Sekunder Kapang Monascus sp. sebagai Kandidat Obat Antikolesterol dan Antikanker. ALCHEMY Jurnal Penelitian Kimia 15(1):104–123
El Rhabori S, El Aissouq A, Chtita S, Khalil F (2022) 3D-QSAR, molecular docking and ADMET studies of thioquinazolinone derivatives against breast cancer. J Indian Chem Soc 99(10):100675
Perumalsamy V, Harish Kumar DR, Suresh S (2023) Conjugation of curcumin and metformin for improved pharmacological profile in cancer therapy: an in silico approach. Biointerface Res Appl Chem 13:1–15
Da Trindade R, Da Silva JK, Setzer WN (2018) Copaifera of the neotropics: a review of the phytochemistry and pharmacology. Int J Mol Sci 19(5):1511
Peria FM, Tiezzi DG, Tirapelli DP, Neto FS, Tirapelli CR, Ambrosio S et al (2010) Kaurenoic acid antitumor activity in breast cancer cells. J Clin Oncol 28(15_suppl):e13641–e13641
Robichaud GA, Picot N, Jean S, Carpenter C, Gray CA (2013) The characterization of anti-breast cancer compounds isolated from the Juniperus communis. Cancer Res 73(8_Supplement):2266–2266
Ferreira KCB, dos Santos Valle ABC, Gualberto ACM, Aleixo DT, Silva LM, Santos MM et al (2022) Kaurenoic acid nanocarriers regulates cytokine production and inhibit breast cancer cell migration. J Controll Release 352:712–725
Chammas SM, Sanchez JF, Alves RC, Giovannini LA & Maria DA (2023) Bioactive compounds of rosemary from the field: a review of the biological effects. Seven Editora 831–845
Robinson A (2009) A review of the use of exemestane in early breast cancer. Thera Clin Risk Manage 5:91–98. https://doi.org/10.2147/TCRM.S3422
Bell S, McNeish B, Dalton L, McLean K (2019) Aromatase inhibitor use, side-effects and discontinuation rates in gynecologic oncology patients. Gynecol Oncol 153(3):e16
Kosmidis PA, Deligianni E, Kosmidis T (2022) 247P Usage and side effects of each common aromatase inhibitor in 5 large European countries: real-world data analysis. Ann Oncol 33:S236
Sherman PW, Billing J (1999) Darwinian gastronomy: Why we use spices: spices taste good because they are good for us. Bioscience 49(6):453–463
Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O (2020) Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 10:1614
Reddy LALINI, Odhav B, Bhoola KD (2003) Natural products for cancer prevention: a global perspective. Pharmacol Ther 99(1):1–13
Siu D (2011) Natural products and their role in cancer therapy. Med Oncol 28(3):888–900
Christensen SB (2021) Natural products that changed society. Biomedicines 9(5):472
Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discovery 14(2):111–129