Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas

Physics of Plasmas - Tập 23 Số 6 - 2016
L. N. Mbuli1,2, S. K. Maharaj1,2, R. Bharuthram2, S. V. Singh3,2, G. S. Lakhina3,2
1South African National Space Agency (SANSA) Space Science 1 , P.O. Box 32, Hermanus 7200, Republic of South Africa
2University of the Western Cape (UWC) 2 Department of Physics, , Robert Sobukwe Road, Bellville 7535, Republic of South Africa
3Indian Institute of Geomagnetism 3 , New Panvel (West), Navi Mumbai 410218, India

Tóm tắt

We examine the characteristics of fast electron-acoustic solitons in a four-component unmagnetised plasma model consisting of cool, warm, and hot electrons, and cool ions. We retain the inertia and pressure for all the plasma species by assuming adiabatic fluid behaviour for all the species. By using the Sagdeev pseudo-potential technique, the allowable Mach number ranges for fast electron-acoustic solitary waves are explored and discussed. It is found that the cool and warm electron number densities determine the polarity switch of the fast electron-acoustic solitons which are limited by either the occurrence of fast electron-acoustic double layers or warm and hot electron number density becoming unreal. For the first time in the study of solitons, we report on the coexistence of fast electron-acoustic solitons, in addition to the regular fast electron-acoustic solitons and double layers in our multi-species plasma model. Our results are applied to the generation of broadband electrostatic noise in the dayside auroral region.

Từ khóa


Tài liệu tham khảo

2004, Nonlinear Proc. Geophys., 11, 275, 10.5194/npg-11-275-2004

1991, Geophys. Res. Lett., 18, 155, 10.1029/90GL02677

1997, J. Geophys. Res., 102, 19861, 10.1029/97JA01375

2009, Phys. Rev. Lett., 102, 155002, 10.1103/PhysRevLett.102.155002

2002, Geophys. Res. Lett., 29, 51-1, 10.1029/2002GL015265

2011, Phys. Plasmas, 18, 122306, 10.1063/1.3671955

1997, J. Geophys. Res., 102, 22131, 10.1029/97JA02033

1966, Rev. Plasma Phys., 4, 23

2002, Phys. Plasmas, 9, 800, 10.1063/1.1445757

2014, J. Plasma Phys., 80, 825, 10.1017/S0022377814000427

1993, Geophys. Res. Lett., 98, 17415, 10.1029/93JA01611

2014, J. Geophys. Res., 119, 5624, 10.1002/2014JA020198

1991, J. Phys. Plasmas, 45, 323, 10.1017/S0022377800015749

2005, Phys. Plasmas, 12, 042901, 10.1063/1.1868733

2012, Phys. Plasmas, 19, 122301, 10.1063/1.4769174

2009, J. Geophys. Res., 114, A09212, 10.1029/2009JA014306

2011, J. Geophys. Res., 116, A10218, 10.1029/2011JA016700

2014, Phys. Plasmas, 21, 062311, 10.1063/1.4884791

2015, Phys. Plasmas, 22, 072303, 10.1063/1.4926513

1993, Phys. Lett. A, 174, 416, 10.1016/0375-9601(93)90201-A

2015, Phys. Plasmas, 22, 062307, 10.1063/1.4922683

2013, Phys. Plasmas, 20, 122115, 10.1063/1.4851995

2004, J. Phys. Plasmas, 11, 1996, 10.1063/1.1689964

2014, Phys. Plasmas, 21, 052115, 10.1063/1.4880055

2015, Phys. Plasmas, 22, 082312, 10.1063/1.4928884

2012, Phys. Plasmas, 19, 032305, 10.1063/1.3691963

2013, Phys. Plasmas, 20, 083705, 10.1063/1.4818439

2007, Phys. Plasmas, 14, 052305, 10.1063/1.2732176