Arabidopsis Spermidine Synthase Is Targeted by an Effector Protein of the Cyst Nematode Heterodera schachtii

Oxford University Press (OUP) - Tập 152 Số 2 - Trang 968-984 - 2010
Tarek Hewezi1,2,3,4, Peter Howe1,2,3,4, Tom Maier1,2,3,4, R. S. Hussey1,2,3,4, Melissa G. Mitchum1,2,3,4, Eric Davis1,2,3,4, Thomas J. Baum1,2,3,4
1Department of Plant Pathology, Iowa State University, Ames, Iowa 50011 (T.H., P.J.H., T.R.M., T.J.B.); Department of Plant Pathology, University of Georgia, Athens, Georgia 30602 (R.S.H.); Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.); and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 2
2Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 (E.L.D.)
3Department of Plant Pathology, University of Georgia, Athens, Georgia 30602 (R.S.H.)
4Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)

Tóm tắt

Abstract Cyst nematodes are sedentary plant parasites that cause dramatic cellular changes in the plant root to form feeding cells, so-called syncytia. 10A06 is a cyst nematode secretory protein that is most likely secreted as an effector into the developing syncytia during early plant parasitism. A homolog of the uncharacterized soybean cyst nematode (Heterodera glycines), 10A06 gene was cloned from the sugar beet cyst nematode (Heterodera schachtii), which is able to infect Arabidopsis (Arabidopsis thaliana). Constitutive expression of 10A06 in Arabidopsis affected plant morphology and increased susceptibility to H. schachtii as well as to other plant pathogens. Using yeast two-hybrid assays, we identified Spermidine Synthase2 (SPDS2), a key enzyme involved in polyamine biosynthesis, as a specific 10A06 interactor. In support of this protein-protein interaction, transgenic plants expressing 10A06 exhibited elevated SPDS2 mRNA abundance, significantly higher spermidine content, and increased polyamine oxidase (PAO) activity. Furthermore, the SPDS2 promoter was strongly activated in the nematode-induced syncytia, and transgenic plants overexpressing SPDS2 showed enhanced plant susceptibility to H. schachtii. In addition, in planta expression of 10A06 or SPDS2 increased mRNA abundance of a set of antioxidant genes upon nematode infection. These data lend strong support to a model in which the cyst nematode effector 10A06 exerts its function through the interaction with SPDS2, thereby increasing spermidine content and subsequently PAO activity. Increasing PAO activity results in stimulating the induction of the cellular antioxidant machinery in syncytia. Furthermore, we observed an apparent disruption of salicylic acid defense signaling as a function of 10A06. Most likely, increased antioxidant protection and interruption of salicylic acid signaling are key aspects of 10A06 function in addition to other physiological and morphological changes caused by altered polyamines, which are potent plant signaling molecules.

Từ khóa


Tài liệu tham khảo

2008, Nat Biotechnol, 26, 909, 10.1038/nbt.1482

2006, Planta, 224, 838, 10.1007/s00425-006-0270-8

2003, Science, 301, 653, 10.1126/science.1086391

2008, Plant Physiol, 146, 162, 10.1104/pp.107.108902

2002, Plant Cell Tissue Organ Cult, 69, 1, 10.1023/A:1015064227278

2007, Genet Eng, 28, 17

2000, J Nematol, 32, 166

1976, Nucleic Acids Res, 3, 2303, 10.1093/nar/3.9.2303

1999, Plant Sci, 140, 103, 10.1016/S0168-9452(98)00218-0

2006, J Mol Biol, 362, 1120, 10.1016/j.jmb.2006.08.017

1998, Plant J, 16, 735, 10.1046/j.1365-313x.1998.00343.x

2002, Plant Cell Environ, 25, 461, 10.1046/j.0016-8025.2001.00819.x

2004, Trends Parasitol, 20, 134, 10.1016/j.pt.2004.01.005

2008, Curr Opin Plant Biol, 11, 360, 10.1016/j.pbi.2008.04.003

1998, J Nematol, 30, 309

1998, Mol Plant Microbe Interact, 11, 952, 10.1094/MPMI.1998.11.10.952

2003, Mol Plant Microbe Interact, 16, 123, 10.1094/MPMI.2003.16.2.123

2002, Mol Plant Microbe Interact, 15, 549, 10.1094/MPMI.2002.15.6.549

2007, New Phytol, 176, 426, 10.1111/j.1469-8137.2007.02181.x

2007, Int J Parasitol, 37, 1269, 10.1016/j.ijpara.2007.03.012

1995, Plant Mol Biol, 13, 207, 10.1007/BF02670897

2003, Mol Plant Microbe Interact, 16, 720, 10.1094/MPMI.2003.16.8.720

2009

1997, Plant J, 11, 573, 10.1046/j.1365-313X.1997.11030573.x

2008, Amino Acids, 34, 35, 10.1007/s00726-007-0501-8

2001, Plant Sci, 161, 481, 10.1016/S0168-9452(01)00432-0

2002, FEBS Lett, 527, 176, 10.1016/S0014-5793(02)03217-9

2008, Plant Cell, 20, 3080, 10.1105/tpc.108.063065

2006, Transgenic Res, 15, 165, 10.1007/s11248-005-3518-3

2006, Proc Natl Acad Sci USA, 103, 14302, 10.1073/pnas.0604698103

2006, Mol Plant Microbe Interact, 19, 463, 10.1094/MPMI-19-0463

2004, Plant Physiol, 135, 1565, 10.1104/pp.104.041699

2007, Mol Plant Microbe Interact, 20, 510, 10.1094/MPMI-20-5-0510

2005, Mol Plant Microbe Interact, 18, 1277, 10.1094/MPMI-18-1277

1987, EMBO J, 6, 3901, 10.1002/j.1460-2075.1987.tb02730.x

2004, Gene, 324, 47, 10.1016/j.gene.2003.09.051

2000, Biol Plant, 43, 1

1993, Phytochemistry, 33, 1281, 10.1016/0031-9422(93)85076-4

2004, Plant Cell Physiol, 45, 712, 10.1093/pcp/pch083

2001, Methods, 25, 402, 10.1006/meth.2001.1262

1991, J Am Oil Chem Soc, 68, 353, 10.1007/BF02663749

2001, New Phytol, 149, 301, 10.1046/j.1469-8137.2001.00017.x

1997, J Nematol, 29, 153

2008, Physiol Plant, 133, 140, 10.1111/j.1399-3054.2008.01049.x

2008, Plant Cell, 20, 1708, 10.1105/tpc.108.059733

2009, Plant Physiol, 149, 1970, 10.1104/pp.108.134932

2008, Proc Natl Acad Sci USA, 105, 14802, 10.1073/pnas.0805946105

2002, Plant Cell, 14, 2539, 10.1105/tpc.004077

2005, Planta, 220, 826, 10.1007/s00425-004-1400-9

2003, Plant J, 33, 911, 10.1046/j.1365-313X.2003.01677.x

2009, Mol Plant Microbe Interact, 22, 330, 10.1094/MPMI-22-3-0330

2000, Mol Biochem Parasitol, 111, 41, 10.1016/S0166-6851(00)00295-4

2004, Cell Microbiol, 6, 795, 10.1111/j.1462-5822.2004.00428.x

2000, Semin Cancer Biol, 10, 55, 10.1006/scbi.2000.0308

2000, Plant Physiol, 124, 431, 10.1104/pp.124.1.431

1991, Plant J, 1, 245, 10.1111/j.1365-313X.1991.00245.x

1985, Plant Physiol, 78, 89, 10.1104/pp.78.1.89

2009, Plant J, 57, 771, 10.1111/j.1365-313X.2008.03727.x

2006, Plant Physiol, 149, 1519

2001, Cell Mol Life Sci, 58, 244, 10.1007/PL00000852

2006, Plant Cell Physiol, 47, 346, 10.1093/pcp/pci252

2008, Plant Cell, 20, 1948, 10.1105/tpc.108.059394

1999, Nematology, 1, 681, 10.1163/156854199508702

1999, Mol Plant Microbe Interact, 12, 64, 10.1094/MPMI.1999.12.1.64

2005, Mol Plant Pathol, 6, 187, 10.1111/j.1364-3703.2005.00270.x

2008, Mol Plant Microbe Interact, 21, 424, 10.1094/MPMI-21-4-0424

2009, Plant Mol Biol, 70, 103, 10.1007/s11103-009-9459-0

2006, Plant Physiol, 142, 193, 10.1104/pp.106.080515

2003, Plant Physiol, 132, 1973, 10.1104/pp.103.024737

2006, Plant Growth Regul, 50, 149, 10.1007/s10725-006-9111-9