Bọt nước ổn định bởi polyoxyethylene dodecyl ether

Chemical Papers - Tập 63 - Trang 620-624 - 2009
Xi-An Li1,2, Jian-Bing Peng1, Yong-Li Yan3
1College of Geology Engineering and Geomatics, Chang’an University, Xi’an, China
2National Laboratory of Geo-hazards Prevention and Geo-environment Protection, Chengdu University of Geo-technology, Chengdu, China
3College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an, China

Tóm tắt

Các đặc tính tạo bọt của các dung dịch nước của chất hoạt động bề mặt không ion polyoxyethylene dodecyl ether (C12EO\n n\n ) đã được nghiên cứu ở nhiệt độ 298 K. Bốn chiều dài chuỗi EO khác nhau, cụ thể là C12EO3, C12EO5, C12EO7 và C12EO9, đã được xem xét. Các bọt thu được từ C12EO3 hoặc C12EO5 rất ổn định, giữ được thể tích không thay đổi trong hơn 20 giờ. Sự hiện diện của các pha tinh thể lỏng lớp chính là lý do chính cho những bọt nước siêu ổn định.

Từ khóa

#polyoxyethylene dodecyl ether #chất hoạt động bề mặt không ion #bọt nước #pha tinh thể lỏng #ổn định bọt

Tài liệu tham khảo

Alargova, R. G., Warhadpande, D. S., Paunov, V. N., & Velev, O. D. (2004). Foam superstabilization by polymer microrods. Langmuir, 20, 10371–10374. DOI: 10.1021/la048647a. Bhatia, D., Goel, G., Bhimania, S. K., & Bhaskarwar, A. N. (2005). Characterization and drainage kinetics of colloidal gas aphrons. AIChE Journal, 51, 3048–3058. DOI: 10.1002/aic.10552. Binks, B. P., & Horozov, T. S. (2005). Aqueous foams stabilised solely by silica nanoparticles. Angewandte Chemie International Edition, 44, 3722–3725. DOI: 10.1002/ange.200462470. Borden, M. (2009). Nanostructural features on stable microbubbles. Soft Matter, 5, 716–720. DOI: 10.1039/b815506b. Dickinson, E. (1998). Proteins at interfaces and in emulsions. Stability, rheology and interactions. Journal of the Chemical Society, Faraday Transactions, 94, 1657–1669. DOI: 10.1039/a801167b. Du, Z. P., Bilbao-Montoya, M. P., Binks, B. P., Dickinson, E., Ettelaie, R., & Murray, B. S. (2003). Outstanding stability of particle-stabilized bubbles. Langmuir, 19, 3106–3108. DOI: 10.1021/la034042n. Friberg, S., Linden, S. E., & Saito, H. (1974). Thin films from liquid crystals. Nature, 251, 494–495. DOI: 10.1038/251494a0. Friberg, S. E., & Solans, C. (1986). Surfactant association structures and the stability of emulsions and foams. Langmuir, 2, 121–126. DOI: 10.1021/la00068a001. Friberg, S. E., & Fang, J.-H. (1987). Foams from aqueous systems of polymerizable surfactants. Journal of Colloid and Interface Science, 118, 543–552. DOI: 10.1016/0021-9797(87)90488-7. Friberg, S. E. (1992). Amphiphilic association structures and thin films. Langmuir, 8, 1889–1892. DOI: 10.1021/la00044a003. Fujii, S., Iddon, P. D., Ryan, A. J., & Armes, S. P. (2006). Aqueous particulate foams stabilized solely with polymer latex particles. Langmuir, 22, 7512–7520. DOI: 10.1021/la060812u. Gonzenbach, U. T., Studart, A. R., Tervoort, E., & Gauckler, L. J. (2006a). Stabilization of foams with inorganic colloidal particles. Langmuir, 22, 10983–10988. DOI: 10.1021/la061825a. Gonzenbach, U. T., Studart, A. R., Tervoort, E., & Gauckler, L. J. (2006b). Ultrastable particle-stabilized foams. Angewandte Chemie International Edition, 45, 3526–3530. DOI: 10.1002/ange.200503676. Huang, K. L., Shigeta, K., & Kunieda, H. (1998). Phase behavior of polyoxyethylene dodecyl ether-water systems. In Progress in Colloid and Polymer Science XII, 110, 171–174. DOI: 10.1007/BFb0118071. Inoue, T., Matsuda, M., Nibu, Y., Misono, Y., & Suzuki, M. (2001). Phase behavior of heptaethylene glycol dodecyl ether and its aqueous mixture revealed by DSC and FT-IR spectroscopy. Langmuir, 17, 1833–1840. DOI: 10.1021/la001231m. Jauregi, P., Mitchell, G., & Varley, J. (2000). Colloidal gas aphrons (CGA): Dispersion and structural features. AIChE Journal, 46, 24–36. DOI: 10.1002/aic.690460105. Langevin, D. (2008). Aqueous foams: A field of investigation at the frontier between chemistry and physics. ChemPhysChem, 9, 510–522. DOI: 10.1002/cphc.200700675. Mitchell, D. J., Tiddy, G. J. T., Waring, L., Bostock, T., & McDonald, M. P. (1983). Phase behaviour of polyoxyethylene surfactants. Journal of the Chemical Society, Faraday Transactions 1, 79, 975–1000. DOI: 10.1039/F19837900975. Murray, B. S., & Ettelaie, R. (2004). Foam stability: proteins and nanoparticles. Current Opinion in Colloid & Interface Science, 9, 314–320. DOI: 10.1016/j.cocis.2004.09.004. Nilsson, P. G., & Lindman, B. (1984). Nuclear magnetic resonance self-diffusion and proton relaxation studies of nonionic surfactant solutions. Aggregate shape in isotropic solutions above the clouding temperature. Journal of Physical Chemistry, 88, 4764–4769. DOI: 10.1021/j150664a063. Pugh, R. J. (1996). Foaming, foam films, antifoaming and defoaming. Advances in Colloid and Interface Science, 64, 67–142. DOI: 10.1016/0001-8686(95)00280-4. Rosevear, F. B. (1954). The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detengents. Journal of the American Oil Chemists’ Society, 31, 628–639. DOI: 10.1007/BF02545595. Shrestha, L. K., Shrestha, R. G., Sharma, S. C., & Aramaki, K. (2008). Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system. Journal of Colloid and Interface Science, 328, 172–179. DOI: 10.1016/j.jcis.2008.08.051. Strey, R., Schomäcker, R., Roux, D., Nallet, F., & Olsson, U. (1990). Dilute lamellar and L3 phases in the binary water-C12E5 system. Journal of the Chemical Society, Faraday Transactions, 86, 2253–2261. DOI: 10.1039/FT9908602253.