Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vi sinh vật trong hệ sinh thái nuôi trồng thủy sản ở giao diện nước-cá: Nghiên cứu điển hình về cá hồi cầu được cho ăn chế độ ăn mới từ Tenebrio molitor
Tóm tắt
Nuôi trồng thủy sản bền vững phụ thuộc vào nhiều yếu tố, bao gồm chất lượng nước, chế độ ăn cá, và cá nuôi. Việc thay thế bột cá (FM) bằng các nguồn protein thay thế là yếu tố then chốt để cải thiện tính bền vững trong nuôi trồng thủy sản và thúc đẩy sức khỏe cá. Thực tế, đã có nhiều nỗ lực nghiên cứu để đánh giá các công thức thức ăn mới, đặc biệt tập trung vào tác động đến vi sinh vật đường ruột của cá. Rất ít nghiên cứu đã khám phá sự tương tác giữa chủ thể và môi trường. Trong nghiên cứu hiện tại, chúng tôi đã đánh giá ảnh hưởng của chế độ ăn dựa trên côn trùng (Tenebrio molitor) đến hệ vi sinh vật tại giao diện nước-cá trong một hệ sinh thái nuôi trồng cá hồi cầu (Oncorhynchus mykiss) được thiết kế. Sử dụng phân tích metabarcoding gen 16S rRNA, chúng tôi đã phân tích toàn diện các hệ vi sinh vật trong mẫu nước, màng sinh học trong bể, dịch nhầy ruột cá, da cá, và mẫu thức ăn. Phân tích hệ vi sinh vật lõi cho thấy sự hiện diện của một lõi rất giảm, được chia sẻ bởi tất cả các nguồn mẫu, bao gồm các loài Aeromonas spp., trong cả nhóm đối chứng và nhóm thử nghiệm với thức ăn mới. Phân tích mạng lưới cho thấy các mẫu đã được phân cụm dựa trên nguồn mẫu, không có sự khác biệt đáng kể liên quan đến thành phần thức ăn đã thử nghiệm. Do đó, các chế độ ăn khác nhau dường như không ảnh hưởng đến hệ vi sinh vật của môi trường (nước và màng sinh học trong bể) và cá (da và dịch nhầy ruột). Để tách bạch đóng góp của thức ăn ở mức độ tinh vi hơn, chúng tôi đã thực hiện phân tích sự phong phú khác biệt và quan sát được sự phong phú/nghèo nàn khác nhau ở các taxa nhất định, so sánh các mẫu thuộc nhóm chế độ ăn đối chứng và nhóm chế độ ăn dựa trên côn trùng. Khám phá omic tại giao diện nước-cá tiết lộ những mẫu hình mà không thể phát hiện ra nếu không có sự phân tích này. Những dữ liệu này chứng minh một mối liên hệ giữa môi trường và cá và cho thấy sự khác biệt tinh tế nhưng quan trọng do thành phần thức ăn gây ra. Do đó, nghiên cứu được trình bày ở đây là một bước tiến hướng tới việc ảnh hưởng tích cực đến môi trường nuôi trồng thủy sản và hệ vi sinh vật của nó.
Từ khóa
#nuôi trồng thủy sản #vi sinh vật #Tenebrio molitor #hệ sinh thái #cá hồi cầu #môi trường nước-cáTài liệu tham khảo
FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en. Accessed 8 December 2022.
Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH. Troell M. A 20-year retrospective review of global aquaculture. Nature. 2021;591(7851):551–63.
Whitley SN, Bollens SM. Fish assemblages across a vegetation gradient in a restoring tidal freshwater wetland: diets and potential for resource competition. Environ Biol Fish. 2014;97:659–74.
Lock EJ, Biancarosa I, Gasco L. Insects as raw materials in compound feed for aquaculture. In: Halloran A, Flore R, Vantomme P, Roos N, editors. Edible insects in sustainable food systems. Cham: Springer; 2018. pp. 263–76. https://doi.org/10.1007/978-3-319-74011-9_16.
Smetana S, Schmitt E, Mathys A. Sustainable use of Hermetia illucens insect biomass for feed and food: attributional and consequential life cycle assessment. Resour Conserv Recycl. 2019;144:285–96.
Chemello G, Renna M, Caimi C, Guerreiro I, Oliva-Teles A, Enes P, et al. Partially defatted Tenebrio molitor Larva meal in diets for grow-out rainbow trout, Oncorhynchus mykiss (Walbaum): effects on growth performance. Diet Digestibility Metab Responses Anim. 2020;10:229.
Iaconisi V, Bonelli A, Pupino R, Gai F, Parisi G. Mealworm as dietary protein source for rainbow trout: body and fillet quality traits. Aquaculture. 2018;484:197–204.
Chiarello M, Auguet JC, Bettarel Y, Bouvier C, Claverie T, Graham NA, Rieuvilleneuve F, Sucré E, Bouvier T, Villéger S. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome. 2018;6:147.
Krotman Y, Yergaliyev TM, Alexander Shani R, Avrahami Y, Szitenberg A. Dissecting the factors shaping fish skin microbiomes in a heterogeneous inland water system. Microbiome. 2020;8:9.
Larsen A, Tao Z, Bullard SA, Arias CR. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol. 2013;85:483–94.
Minich JJ, Poore GD, Jantawongsri K, Johnston C, Bowie K, Bowman J, Knight R, Nowak B, Allen EE. Microbial ecology of Atlantic salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl Environ Microbiol. 2020;86:e00411–20.
Uren Webster TM, Rodriguez-Barreto D, Castaldo G, Gough P, Consuegra S, Garcia de Leaniz C. Environmental plasticity and colonisation history in the Atlantic salmon microbiome: a translocation experiment. Mol Ecol. 2020;29:886–98.
Bruno A, Casiraghi M, Bautista M, Hajibabaei M. Stressors acting on aquatic Ecosystems: high-throughput sequencing approaches to shed light on human-nature interactions. Front Ecol Evol. 2021:751.
Gilbert JA, Stephens B. Microbiology of the built environment. Nat Rev Microbiol. 2018;16:661–70.
Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. MSystems. 2016;1:e00021–16.
Terova G, Gini E, Gasco L, Moroni F, Antonini M, Rimoldi S. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J Anim Sci Biotechnol. 2021;12:1–4.
Terova G, Rimoldi S, Ascione C, Gini E, Ceccotti C, Gasco L. Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet. Rev Fish Biol Fish. 2019;29:465–86.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:1–7.
https://github.com/qiime2/q2-taxa. Accessed 8 December 2022.
Shannon CE. A Mathematical Theory of Communication. Bell Syst Technic J. 1948;27:623–56. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.
Whittaker RJ, Willis KJ, Field R. Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr. 2001;28:453–70.
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;1:47:583–621.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57:289–300.
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:326–49.
Anderson MJ. Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland. 2005;26:32–46.
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MH, Oksanen MJ, Suggests MA. The vegan package. Community Ecol Package. 2007;10(631–637):719.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.
Bruno A, Sandionigi A, Galimberti A, Siani E, Labra M, Cocuzza C, Ferri E, Casiraghi M. One step forwards for the routine use of high-throughput DNA sequencing in environmental monitoring. An efficient and standardizable method to maximize the detection of environmental bacteria. MicrobiologyOpen. 2017;6:e00421.
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823. 2014.
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
Testerman T, Beka L, Reichley SR, King S, Welch TJ, Wiens GD, Graf J. Large-Scale, multi-year Microbial Community Survey of a Freshwater Trout Aquaculture Facility. FEMS Microbiol Ecol. 2022;98:fiac101.
Marmen S, Fadeev E, Al Ashhab A, Benet-Perelberg A, Naor A, Patil HJ, Cytryn E, Viner-Mozzini Y, Sukenik A, Lalzar M, Sher D. Seasonal dynamics are the major driver of microbial diversity and composition in intensive freshwater aquaculture. Front Microbiol. 2021:1699.
Bruno A, Sandionigi A, Rizzi E, Bernasconi M, Vicario S, Galimberti A, Cocuzza C, Labra M, Casiraghi M. Exploring the under-investigated microbial dark matter of drinking water treatment plants. Sci Rep. 2017;7:1–7.
Duarte LN, Coelho FJ, Cleary DF, Bonifácio D, Martins P, Gomes NC. Bacterial and microeukaryotic plankton communities in a semi-intensive aquaculture system of sea bass (Dicentrarchus labrax): a seasonal survey. Aquaculture. 2019;503:59–69.
Peixoto RS, Voolstra CR, Sweet M, Duarte CM, Carvalho S, Villela H, Lunshof JE, Gram L, Woodhams DC, Walter J, Roik A. Harnessing the microbiome to prevent global biodiversity loss. Nat Microbiol. 2022;7:1726–35.
Foundation TO, Oceans T et al. European Molecular Biology Laboratory (EMBL). Priorities for ocean microbiome research. Nat Microbiol. 2022;7:937–947.
Tarhriz V, Hirose S, Fukushima SI, Hejazi MA, Imhoff JF, Thiel V, Hejazi MS. Emended description of the genus Tabrizicola and the species Tabrizicola aquatica as aerobic anoxygenic phototrophic bacteria. Antonie Van Leeuwenhoek. 2019;112:1169–75.
Xu S, Liu J, Ni H, Yang X, Qiu J, Huang X, He J. Rudanella paleaurantiibacter sp. nov., isolated from activated sludge. Curr Microbiol. 2020;77:2016–22.
Kalyuzhnaya MG, Beck DA, Vorobev A, Smalley N, Kunkel DD, Lidstrom ME, Chistoserdova L. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int J Syst Evol MicroBiol. 2012;62:106–11.
Chen S, Walker ED. Genome sequence of Flavobacteriaceae strain W22, isolated from a Tree Hole Mosquito Habitat. Microbiol Resource Announcements. 2020;9:e00008–20.
Chhetri G, Kim J, Kim I, Kang M, Seo T. Chryseobacterium caseinilyticum sp. nov., a casein hydrolyzing bacterium isolated from rice plant and emended description of Chryseobacterium piscicola. Int J Syst Evol MicroBiol. 2021;71:004854.
Guzman J, Vilcinskas A. Bacteria associated with cockroaches: health risk or biotechnological opportunity? Appl Microbiol Biotechnol. 2020;104:10369–87.
Yoon SH, Lee JE, Han RH, Kwon M, Kim GB. Chryseobacterium mulctrae sp. nov., isolated from raw cow’s milk. Int J Syst Evol MicroBiol. 2019;69:3478–84.
El-Saadony MT, Alagawany M, Patra AK, Kar I, Tiwari R, Dawood MA, Dhama K, Abdel-Latif HM. The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol. 2021;117:36–52.
Yao Y, Falgenhauer L, Falgenhauer J, Hauri AM, Heinmüller P, Domann E, Chakraborty T, Imirzalioglu C. Carbapenem-resistant Citrobacter Spp. as an emerging concern in the hospital-setting: results from a genome-based regional surveillance study. Front Cell Infect Microbiol. 2021;11.
Büyükdeveci ME, Balcázar JL, Demirkale İ, Dikel S. Effects of garlic-supplemented diet on growth performance and intestinal microbiota of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2018;486:170–4.
Minich JJ, Nowak B, Elizur A, Knight R, Fielder S, Allen EE. Impacts of the marine hatchery built environment, water and feed on mucosal microbiome colonization across ontogeny in Yellowtail Kingfish, Seriola lalandi. Front Mar Sci. 2021;8:676731.
De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut–skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms. 2021;9:353.
Sylvain F, Cheaib B, Llewellyn M, Gabriel Correia T, Barros Fagundes D, Luis Val A, et al. PH drop impacts differentially skin and gut microbiota of the amazonian fish tambaqui (Colossoma macropomum). Sci Rep. 2016;6:1–10.
Berggren H, Tibblin P, Yıldırım Y, Broman E, Larsson P, Lundin D, Forsman A. Fish skin microbiomes are highly variable among individuals and populations but not within individuals. Front Microbiol. 2021;12.
Lowrey L, Woodhams DC, Tacchi L, Salinas I. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol. 2015;81:6915–25.
Jung A, Jung-Schroers V. Detection of Deefgea chitinilytica in freshwater ornamental fish. Lett Appl Microbiol. 2011;52:497–500.
Chen WM, Chung YN, Chiu TF, Cheng CY, Arun AB, Sheu SY. Deefgea chitinilytica sp. nov., isolated from a wetland. Int J Syst Evol MicroBiol. 2010;60:1450–3.
Stackebrandt E, Lang E, Cousin S, Päuker O, Brambilla E, Kroppenstedt R, Lünsdorf H. Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria. Int J Syst Evol Microbiol. 2007;57:639–45. https://doi.org/10.1099/ijs.0.64771-0.
Henry MA, Gasco L, Chatzifotis S, Piccolo G. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on european sea bass, Dicentrarchus labrax. Comp Immunol. 2018;81:204–9. https://doi.org/10.1016/j.dci.2017.12.002. Developmental.
Hidalgo MC, Morales AE, Pula HJ, Tomás-Almenar C, Sánchez-Muros MJ, Melenchón F, Fabrikov D, Cardenete G. Oxidative metabolism of gut and innate immune status in skin and blood of tench (Tinca tinca) fed with different insect meals (Hermetia illucens and Tenebrio molitor). Aquaculture. 2022;738384. https://doi.org/10.1016/j.aquaculture.2022.738384.
Guardiola FA, Cuesta A, Abellán E, Meseguer J, Esteban MA. Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish. Fish Shellfish Immunol. 2014;40:24–31. https://doi.org/10.1016/j.fsi.2014.06.018.
Koutsos E, Modica B, Freel T. Immunomodulatory potential of black soldier fly larvae: applications beyond nutrition in animal feeding programs. Transl Anim Sci. 2022;6:txac084. https://doi.org/10.1093/tas/txac084.
Rimoldi S, Gini E, Iannini F, Gasco L, Terova G. The effects of dietary insect meal from Hermetia illucens Prepupae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Animals. 2019;9:143.
Kozińska A, Paździor E, Pękala A, Niemczuk W. Acinetobacter johnsonii and Acinetobacter lwoffii-the emerging fish pathogens. J Veterinary Res. 2014;58:193–9.
Loch TP, Faisal M. Emerging flavobacterial infections in fish: a review. J Adv Res. 2015;6:283–300.
Starliper CE. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res. 2011;2:97–108.
Xiong J, Wang K, Wu J, Qiuqian L, Yang K, Qian Y, Zhang D. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl Microbiol Biotechnol. 2015;99:6911–9.
Zhang D, Wang X, Xiong J, Zhu J, Wang Y, Zhao Q, Chen H, Guo A, Wu J, Dai H. Bacterioplankton assemblages as biological indicators of shrimp health status. Ecol Ind. 2014;38:218–24.
Zheng Y, Yu M, Liu J, Qiao Y, Wang L, Li Z, Zhang XH, Yu M. Bacterial community associated with healthy and diseased Pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Front Microbiol. 2017;8:1362.
Infante-Villamil S, Huerlimann R, Condon K, Maes GE, Jerry DR. Bacterial signatures of productivity decay in Penaeus monodon ponds infected with PirA toxin. Aquaculture. 2019;511:734202.
Scolari F, Sandionigi A, Carlassara M, Bruno A, Casiraghi M, Bonizzoni M. Exploring changes in the microbiota of Aedes albopictus: comparison among breeding site water, larvae, and adults. Front Microbiol. 2021;12:624170.
Moschos S, Kormas KA, Karayanni H. Prokaryotic diversity in marine and freshwater recirculating aquaculture systems. Reviews in Aquaculture. 2022.
Wang AR, Ran C, Ringø E, Zhou ZG. Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture. 2018;10:626–40. https://doi.org/10.1111/raq.12191.
Pessoa RB, de Oliveira WF, Marques DS, dos Santos Correia MT, de Carvalho EV, Coelho LC. The genus Aeromonas: a general approach. Microb Pathog. 2019;130:81–94. https://doi.org/10.1016/j.micpath.2019.02.036.
Gasco L, Acuti G, Bani P, Dalle Zotte A, Danieli PP, De Angelis A, et al. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital J Anim Sci. 2020;19:360–72.
Kröger T, Dupont J, Büsing L, Fiebelkorn F. Acceptance of insect-based food products in western societies: a systematic review. Front Nutr. 2022;8:1186. https://doi.org/10.3389/fnut.2021.759885.
Frigerio J, Agostinetto G, Galimberti A, De Mattia F, Labra M, Bruno A. Tasting the differences: Microbiota analysis of different insect-based novel food. Food Res Int. 2020;137:109426.
Garofalo C, Milanović V, Cardinali F, Aquilanti L, Clementi F, Osimani A. Current knowledge on the microbiota of edible insects intended for human consumption: a state-of-the-art review. Food Res Int. 2019;125:108527.
Galimberti A, Bruno A, Agostinetto G, Casiraghi M, Guzzetti L, Labra M. Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr Opin Biotechnol. 2021;70:36–41. https://doi.org/10.1016/j.copbio.2020.10.006.
Bruno A, Agostinetto G, Fumagalli S, Ghisleni G, Sandionigi A. It’sa Long Way to the tap: Microbiome and DNA-Based omics at the core of drinking Water Quality. Int J Environ Res Public Health. 2022;19(13):7940.
Bruno A, Fumagalli S, Ghisleni G, Labra M. The Microbiome of the built environment: the Nexus for Urban Regeneration for the cities of tomorrow. Microorganisms. 2022;10(12):2311.